SCAAML is a deep learning framwork dedicated to side-channel attacks run on top of TensorFlow 2.x.

Related tags

Deep Learningscaaml
Overview

SCAAML: Side Channel Attacks Assisted with Machine Learning

SCAAML banner

SCAAML (Side Channel Attacks Assisted with Machine Learning) is a deep learning framwork dedicated to side-channel attacks. It is written in python and run on top of TensorFlow 2.x.

Available compoments

  • scaaml/: The SCAAML framework code. Its used by the various tools.
  • scaaml_intro/: A Hacker Guide To Deep Learning Based Side Channel Attacks. Code, dataset and models used in our step by step tutorial on how to use deep-learning to perform AES side-channel attacks in practice.

Install

Dependencies

To use SCAAML you need to have a working version of TensorFlow 2.x and a version of Python >=3.6

SCAAML framework install

  1. Clone the repository: git clone github.com/google/scaaml/
  2. Install the SCAAML package: python setup.py develop

Dataset and models

Every SCAAML component rely on a datasets and optional models that you will need to download in the component directory. The link to download those are available in the components specific README.md. Simply click on the directory representing the component of your choice, or the link to the component in the list above.

Publications & Citation

Here is the list of publications and talks related to SCAAML. If you use any of its codebase, models or datasets please cite:

@online{bursztein2019scaaml,
  title={SCAAML:  Side Channel Attacks Assisted with Machine Learning},
  author={Bursztein, Elie and others},
  year={2019},
  publisher={GitHub},
  url={https://github.com/google/scaaml},
}

Additionally please also cite the talks and publications that are the most relevant to your work, so reader can quickly find the right information. Last but not least, you are more than welcome to add your publication/talk to the list below by making a pull request 😊 .

SCAAML AES tutorial

DEF CON talk that provides a practical introduction to AES deep-learning based side-channel attacks

@inproceedings{burzteindc27,
title={A Hacker Guide To Deep Learning Based Side Channel Attacks},
author={Elie Bursztein and Jean-Michel Picod},
booktitle ={DEF CON 27},
howpublished = {\url{https://elie.net/talk/a-hackerguide-to-deep-learning-based-side-channel-attacks/}}
year={2019},
editor={DEF CON}
}

Disclaimer

This is not an official Google product.

Owner
Google
Google ❤️ Open Source
Google
Nodule Generation Algorithm Baseline and template code for node21 generation track

Nodule Generation Algorithm This codebase implements a simple baseline model, by following the main steps in the paper published by Litjens et al. for

node21challenge 10 Apr 21, 2022
PyTorch implementation of Deformable Convolution

Deformable Convolutional Networks in PyTorch This repo is an implementation of Deformable Convolution. Ported from author's MXNet implementation. Buil

411 Dec 16, 2022
library for nonlinear optimization, wrapping many algorithms for global and local, constrained or unconstrained, optimization

NLopt is a library for nonlinear local and global optimization, for functions with and without gradient information. It is designed as a simple, unifi

Steven G. Johnson 1.4k Dec 25, 2022
A gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor.

OpenHands OpenHands is a gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor. Currently the system can iden

Paul Treanor 12 Jan 10, 2022
Complete system for facial identity system

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

4 May 02, 2022
"Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback"

This is code repo for our EMNLP 2017 paper "Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback", which implements the A2C algorithm on top of a neural encoder-

Khanh Nguyen 131 Oct 21, 2022
Diagnostic tests for linguistic capacities in language models

LM diagnostics This repository contains the diagnostic datasets and experimental code for What BERT is not: Lessons from a new suite of psycholinguist

61 Jan 02, 2023
RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation (CIKM'17)

RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation This is the implementation of RATE: Overcoming Noise and Spar

Yu Zhang 5 Feb 10, 2022
AI Virtual Calculator: This is a simple virtual calculator based on Artificial intelligence.

AI Virtual Calculator: This is a simple virtual calculator that works with gestures using OpenCV. We will use our hand in the air to click on the calc

Md. Rakibul Islam 1 Jan 13, 2022
[ICCV 2021] Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neural Networks in Frequency Domain

Amplitude-Phase Recombination (ICCV'21) Official PyTorch implementation of "Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neur

Guangyao Chen 53 Oct 05, 2022
A transformer which can randomly augment VOC format dataset (both image and bbox) online.

VocAug It is difficult to find a script which can augment VOC-format dataset, especially the bbox. Or find a script needs complex requirements so it i

Coder.AN 1 Mar 05, 2022
lightweight python wrapper for vowpal wabbit

vowpal_porpoise Lightweight python wrapper for vowpal_wabbit. Why: Scalable, blazingly fast machine learning. Install Install vowpal_wabbit. Clone and

Joseph Reisinger 163 Nov 24, 2022
Yolact-keras实例分割模型在keras当中的实现

Yolact-keras实例分割模型在keras当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料 Reference 性能情况 训练数

Bubbliiiing 11 Dec 26, 2022
Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

104 Dec 15, 2022
Repository for reproducing `Model-Based Robust Deep Learning`

Model-Based Robust Deep Learning (MBRDL) In this repository, we include the code necessary for reproducing the code used in Model-Based Robust Deep Le

Alex Robey 16 Sep 19, 2022
Source Code For Template-Based Named Entity Recognition Using BART

Template-Based NER Source Code For Template-Based Named Entity Recognition Using BART Training Training train.py Inference inference.py Corpus ATIS (h

174 Dec 19, 2022
Tensorflow 2 implementation of the paper: Learning and Evaluating Representations for Deep One-class Classification published at ICLR 2021

Deep Representation One-class Classification (DROC). This is not an officially supported Google product. Tensorflow 2 implementation of the paper: Lea

Google Research 137 Dec 23, 2022
Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Detection"

M-LSD: Towards Light-weight and Real-time Line Segment Detection Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Det

123 Jan 04, 2023
abess: Fast Best-Subset Selection in Python and R

abess: Fast Best-Subset Selection in Python and R Overview abess (Adaptive BEst Subset Selection) library aims to solve general best subset selection,

297 Dec 21, 2022
The official implementation of VAENAR-TTS, a VAE based non-autoregressive TTS model.

VAENAR-TTS This repo contains code accompanying the paper "VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis". Sa

THUHCSI 138 Oct 28, 2022