Parallel and High-Fidelity Text-to-Lip Generation; AAAI 2022 ; Official code

Overview

Parallel and High-Fidelity Text-to-Lip Generation

arXiv GitHub Stars downloads

This repository is the official PyTorch implementation of our AAAI-2022 paper, in which we propose ParaLip (for text-based talking face synthesis) .

Video Demos

P+22M_si1076.mp4

Video samples can be found in our demo page.

🚀 News:

  • Feb.24, 2022: Our new work, NeuralSVB was accepted by ACL-2022 arXiv. Project Page.
  • Dec.01, 2021: ParaLip was accepted by AAAI-2022.
  • July.14, 2021: We submitted ParaLip to Arxiv arXiv.

Environments

conda create -n your_env_name python=3.7
source activate your_env_name 
pip install -r requirements.txt   

ParaLip

1. Preparation

Data Preparation

We provide the first frame of each test example for inference. Besides, we include the audio pieces of 5 test examples to generate talking lip videos with human voice.

a) Download and decompress the TCD-TIMIT dataset, then put them in the data directory

tar -xvf timit.tar
mv timit data/

b) Run the following scripts to pack the dataset for inference.

export PYTHONPATH=.
python datasets/lipgen/timit/gen_timit.py --config configs/lipgen/timit/lipgen_timit.yaml

We don't provide the full datasets of TCD-TIMIT because of the licence issue. You can download it by yourself if necessary.

2. Inference Example

CUDA_VISIBLE_DEVICES=0 python tasks/timit_lipgen_task.py --config configs/lipgen/timit/lipgen_timit.yaml --exp_name timit_2 --infer --reset        

We also provide:

  • the pre-trained model of ParaLip on TCD-TIMIT. Remember to put the pre-trained models in checkpoints/timit_2 directory respectively.

Citation

@misc{https://doi.org/10.48550/arxiv.2107.06831,
  doi = {10.48550/ARXIV.2107.06831},
  
  url = {https://arxiv.org/abs/2107.06831},
  
  author = {Liu, Jinglin and Zhu, Zhiying and Ren, Yi and Huang, Wencan and Huai, Baoxing and Yuan, Nicholas and Zhao, Zhou},
  
  keywords = {Multimedia (cs.MM), Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences},
  
  title = {Parallel and High-Fidelity Text-to-Lip Generation},
  
  publisher = {arXiv},
  
  year = {2021},
  
  copyright = {arXiv.org perpetual, non-exclusive license}
}
You might also like...
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.
Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.

Neural Spatio-Temporal Point Processes [arxiv] Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel Abstract. We propose a new class of parameterizations

《Towards High Fidelity Face Relighting with Realistic Shadows》(CVPR 2021)
《Towards High Fidelity Face Relighting with Realistic Shadows》(CVPR 2021)

Towards High Fidelity Face-Relighting with Realistic Shadows Andrew Hou, Ze Zhang, Michel Sarkis, Ning Bi, Yiying Tong, Xiaoming Liu. In CVPR, 2021. T

Tensorflow python implementation of
Tensorflow python implementation of "Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos"

Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos This repository is the official tensorflow python implementation

A two-stage U-Net for high-fidelity denoising of historical recordings
A two-stage U-Net for high-fidelity denoising of historical recordings

A two-stage U-Net for high-fidelity denoising of historical recordings Official repository of the paper (not submitted yet): E. Moliner and V. Välimäk

Implementation for HFGI: High-Fidelity GAN Inversion for Image Attribute Editing
Implementation for HFGI: High-Fidelity GAN Inversion for Image Attribute Editing

HFGI: High-Fidelity GAN Inversion for Image Attribute Editing High-Fidelity GAN Inversion for Image Attribute Editing Update: We released the inferenc

 SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis
SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis

SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis Pretrained Models In this work, we created synthetic tissue

《LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification》(AAAI 2021) GitHub:

LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification

Official implementation for paper Knowledge Bridging for Empathetic Dialogue Generation (AAAI 2021).
Official implementation for paper Knowledge Bridging for Empathetic Dialogue Generation (AAAI 2021).

Knowledge Bridging for Empathetic Dialogue Generation This is the official implementation for paper Knowledge Bridging for Empathetic Dialogue Generat

Comments
  • How to create the *_PHN.txt for specific sentences?

    How to create the *_PHN.txt for specific sentences?

    Hi, I want the mouth to say sentences I specify, so I need to make phoneme files like *_PHN.txt in the timit directory. I would like to ask if there is any tool to do this?

    opened by a312863063 1
  • How to train ParaLip?

    How to train ParaLip?

    I have already tested through the pretrained model, but i still cannot to train it. I think the code lack the trainning code. Is it available to share in the repository? Thank you!

    opened by Zeqing-Wang 2
Owner
Zhying
Incoming student of [email protected]
Zhying
Training a Resilient Q-Network against Observational Interference, Causal Inference Q-Networks

Obs-Causal-Q-Network AAAI 2022 - Training a Resilient Q-Network against Observational Interference Preprint | Slides | Colab Demo | Environment Setup

23 Nov 21, 2022
Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286

Pytorch-DPPO Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286 Using PPO with clip loss (from https

Alexis David Jacq 163 Dec 26, 2022
TJU Deep Learning & Neural Network

Deep_Learning & Neural_Network_Lab 实验环境 Python 3.9 Anaconda3(官网下载或清华镜像都行) PyTorch 1.10.1(安装代码如下) conda install pytorch torchvision torchaudio cudatool

St3ve Lee 1 Jan 19, 2022
Learning Calibrated-Guidance for Object Detection in Aerial Images

Learning Calibrated-Guidance for Object Detection in Aerial Images arxiv We propose a simple yet effective Calibrated-Guidance (CG) scheme to enhance

51 Sep 22, 2022
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
Vision transformers (ViTs) have found only limited practical use in processing images

CXV Convolutional Xformers for Vision Vision transformers (ViTs) have found only limited practical use in processing images, in spite of their state-o

Cloudwalker 23 Sep 10, 2022
Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax

Clockwork VAEs in JAX/Flax Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported

Julius Kunze 26 Oct 05, 2022
Drone Task1 - Drone Task1 With Python

Drone_Task1 Matching Results 3.mp4 1.mp4

MLV Lab (Machine Learning and Vision Lab at Korea University) 11 Nov 14, 2022
Semi-Supervised Learning for Fine-Grained Classification

Semi-Supervised Learning for Fine-Grained Classification This repo contains the code of: A Realistic Evaluation of Semi-Supervised Learning for Fine-G

25 Nov 08, 2022
Python KNN model: Predicting a probability of getting a work visa. Tableau: Non-immigrant visas over the years.

The value of international students to the United States. Probability of getting a non-immigrant visa. Project timeline: Jan 2021 - April 2021 Project

Zinaida Dvoskina 2 Nov 21, 2021
An open source object detection toolbox based on PyTorch

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

Bo Chen 24 Dec 28, 2022
Run object detection model on the Raspberry Pi

Using TensorFlow Lite with Python is great for embedded devices based on Linux, such as Raspberry Pi.

Dimitri Yanovsky 6 Oct 08, 2022
Super Pix Adv - Offical implemention of Robust Superpixel-Guided Attentional Adversarial Attack (CVPR2020)

Super_Pix_Adv Offical implemention of Robust Superpixel-Guided Attentional Adver

DLight 8 Oct 26, 2022
Empowering journalists and whistleblowers

Onymochat Empowering journalists and whistleblowers Onymochat is an end-to-end encrypted, decentralized, anonymous chat application. You can also host

Samrat Dutta 19 Sep 02, 2022
Self-Supervised depth kalilia

Self-Supervised depth kalilia

24 Oct 15, 2022
A cool little repl-based simulation written in Python

A cool little repl-based simulation written in Python planned to integrate machine-learning into itself to have AI battle to the death before your eye

Em 6 Sep 17, 2022
Source code for "Pack Together: Entity and Relation Extraction with Levitated Marker"

PL-Marker Source code for Pack Together: Entity and Relation Extraction with Levitated Marker. Quick links Overview Setup Install Dependencies Data Pr

THUNLP 173 Dec 30, 2022
MusicYOLO framework uses the object detection model, YOLOx, to locate notes in the spectrogram.

MusicYOLO MusicYOLO framework uses the object detection model, YOLOX, to locate notes in the spectrogram. Its performance on the ISMIR2014 dataset, MI

Xianke Wang 2 Aug 02, 2022
Polynomial-time Meta-Interpretive Learning

Louise - polynomial-time Program Learning Getting help with Louise Louise's author can be reached by email at Stassa Patsantzis 64 Dec 26, 2022

Generating Anime Images by Implementing Deep Convolutional Generative Adversarial Networks paper

AnimeGAN - Deep Convolutional Generative Adverserial Network PyTorch implementation of DCGAN introduced in the paper: Unsupervised Representation Lear

Rohit Kukreja 23 Jul 21, 2022