Pytorch Geometric Tutorials

Overview

PytorchGeometricTutorial

Hi! We are Antonio Longa and Giovanni Pellegrini, PhD students, and PhD Gabriele Santin, researcher, working between Fondazione Bruno Kessler and the University of Trento, Italy.

This project aims to present through a series of tutorials various techniques in the field of Geometric Deep Learning, focusing on how they work and how to implement them using the Pytorch geometric library, an extension to Pytorch to deal with graphs and structured data, developed by @rusty1s.

You can find our video tutorials on Youtube and at our official website here.

Feel free to join our weekly online tutorial! For more details, have a look at the official website.

Tutorials:

Installation of PyG:

In order to have running notebooks in Colab, we use the following installation commands:

!pip install torch-scatter -f https://data.pyg.org/whl/torch-1.9.0+cu111.html
!pip install torch-sparse -f https://data.pyg.org/whl/torch-1.9.0+cu111.html
!pip install torch-geometric

These version are tested and running in Colab. If instead you run the notebooks on your machine, have a look at the PyG's installation instructions to find suitable versions.

Comments
  • DiffPool tutorial does not work

    DiffPool tutorial does not work

    Thank you for making the videos and notebooks available! They are very nice and helpful. I saw that the DiffPool model still does not work for the version that is uploaded here. I was wondering if you already have the working model available?

    Thank you in advance!

    opened by lisiq 4
  • Some tutorials no longer work with Google Colab

    Some tutorials no longer work with Google Colab

    Tutorial 14 and 15 both no longer work with colab and give this error after the second cell


    OSError Traceback (most recent call last) in () 2 import os 3 import pandas as pd ----> 4 from torch_geometric.data import InMemoryDataset, Data, download_url, extract_zip 5 from torch_geometric.utils.convert import to_networkx 6 import networkx as nx

    6 frames /usr/lib/python3.7/ctypes/init.py in init(self, name, mode, handle, use_errno, use_last_error) 362 363 if handle is None: --> 364 self._handle = _dlopen(self._name, mode) 365 else: 366 self._handle = handle

    OSError: /usr/local/lib/python3.7/dist-packages/torch_sparse/_convert_cpu.so: undefined symbol: _ZNK2at6Tensor5zero_Ev

    opened by itamblyn 2
  • Modify the example1

    Modify the example1

    https://github.com/AntonioLonga/PytorchGeometricTutorial/blob/main/Tutorial1/Tutorial1.ipynb

    I think this example could be modified for the better. In fact, the nums_layer = 1 parameter should be defined in Net, and a layer of GNNStack should be defined according to this parameter in the forward method. This would solve the problem raised by YouTube video 43:29.

    opened by abcdabcd989 2
  • Tutorial 3 code

    Tutorial 3 code

    Hi,

    Thanks for this great tutorials and videos. Really nice work.

    I was wondering about the GATLayer class in the code of tutorial 3. Once the class is made, it is no longer used after the 'Use it' heading in the notebook. Instead, the GATConv from torch geometric is used directly. Then why was the GATLayer class made?

    Thanks, VR

    opened by vandana-rajan 1
  • Error for running

    Error for running "from torch_geometric.nn import Node2Vec"

    while running from torch_geometric.nn import Node2Vec in google colab an error occur OSError: /usr/local/lib/python3.7/dist-packages/torch_sparse/_convert_cpu.so: undefined symbol: _ZNK2at6Tensor5zero_Ev

    what should I do?

    opened by ayreen2 1
  • Adding Colab support for the tutorials

    Adding Colab support for the tutorials

    Thanks for your effort and great work!

    I think, In order to make the tutorials more convenient for a wide audience it would be helpful to add a colab version of the notebooks with the special button, that redirects to the http://colab.research.google.com/.

    All tutorials can be run in colab via adding the notebook from GitHub and adding the cell with the installation of the pytorch-geometric and all dependencies. But the version with native support would make it more convenient.

    opened by Godofnothing 1
  • Question about Tutorial16.ipynb

    Question about Tutorial16.ipynb

    Hello, Thank you for the nice tutorial, it helps a lot to get started! I have a few questions concerning Tutorial16.ipynb: 1/ what is the effect of the parameter lin=True? 2/ what's the effect of changing the number of hidden and output channels? 3/ what is the purpose of l1, e1, l2, e2? Best, Claire

    opened by claireguepin 0
  • Some questions I found in this tutorial

    Some questions I found in this tutorial

    Hi, this is a nice tutorial. However, I find that there are some minor problems with the materials.

    1. I fond that they are same links so I think you can delete one. image
    2. In the node2vec practice colab notebook, the current installation requirement will lead the colab environment to break down. I tried this combination and it works: image Could you please figure out why? Thanks a lot!
    opened by HelloWorldLTY 0
Releases(v1.0.0)
Owner
Antonio Longa
Antonio Longa
A collection of models for image<->text generation in ACM MM 2021.

Bi-directional Image and Text Generation UMT-BITG (image & text generator) Unifying Multimodal Transformer for Bi-directional Image and Text Generatio

Multimedia Research 63 Oct 30, 2022
Source code for paper: Knowledge Inheritance for Pre-trained Language Models

Knowledge-Inheritance Source code paper: Knowledge Inheritance for Pre-trained Language Models (preprint). The trained model parameters (in Fairseq fo

THUNLP 31 Nov 19, 2022
Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021

46 Jul 06, 2022
Unofficial implementation of Proxy Anchor Loss for Deep Metric Learning

Proxy Anchor Loss for Deep Metric Learning Unofficial pytorch, tensorflow and mxnet implementations of Proxy Anchor Loss for Deep Metric Learning. Not

Geonmo Gu 3 Jun 09, 2021
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).

PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR)

Ilya Kostrikov 3k Dec 31, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Dec 29, 2022
In this project, we create and implement a deep learning library from scratch.

ARA In this project, we create and implement a deep learning library from scratch. Table of Contents Deep Leaning Library Table of Contents About The

22 Aug 23, 2022
Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative adversarial networks (GAN)

Flickr-Faces-HQ Dataset (FFHQ) Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative

NVIDIA Research Projects 2.9k Dec 28, 2022
Crowd-sourced Annotation of Human Motion.

Motion Annotation Tool Live: https://motion-annotation.humanoids.kit.edu Paper: The KIT Motion-Language Dataset Installation Start by installing all P

Matthias Plappert 4 May 25, 2020
Official PyTorch Implementation for "Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes"

PVDNet: Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes This repository contains the official PyTorch implementatio

Junyong Lee 98 Nov 06, 2022
This is the official pytorch implementation of AutoDebias, an automatic debiasing method for recommendation.

AutoDebias This is the official pytorch implementation of AutoDebias, a debiasing method for recommendation system. AutoDebias is proposed in the pape

Dong Hande 77 Nov 25, 2022
Transformers provides thousands of pretrained models to perform tasks on different modalities such as text, vision, and audio.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained models

Clara Meister 50 Nov 12, 2022
Fast methods to work with hydro- and topography data in pure Python.

PyFlwDir Intro PyFlwDir contains a series of methods to work with gridded DEM and flow direction datasets, which are key to many workflows in many ear

Deltares 27 Dec 07, 2022
Official codebase for Decision Transformer: Reinforcement Learning via Sequence Modeling.

Decision Transformer Lili Chen*, Kevin Lu*, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas†, and Igor M

Kevin Lu 1.4k Jan 07, 2023
Unofficial Alias-Free GAN implementation. Based on rosinality's version with expanded training and inference options.

Alias-Free GAN An unofficial version of Alias-Free Generative Adversarial Networks (https://arxiv.org/abs/2106.12423). This repository was heavily bas

dusk (they/them) 75 Dec 12, 2022
SE-MSCNN: A Lightweight Multi-scaled Fusion Network for Sleep Apnea Detection Using Single-Lead ECG Signals

SE-MSCNN: A Lightweight Multi-scaled Fusion Network for Sleep Apnea Detection Using Single-Lead ECG Signals Abstract Sleep apnea (SA) is a common slee

9 Dec 21, 2022
Deep Reinforcement Learning for Multiplayer Online Battle Arena

MOBA_RL Deep Reinforcement Learning for Multiplayer Online Battle Arena Prerequisite Python 3 gym-derk Tensorflow 2.4.1 Dotaservice of TimZaman Seed R

Dohyeong Kim 32 Dec 18, 2022
This repository contains the implementation of the paper: Federated Distillation of Natural Language Understanding with Confident Sinkhorns

Federated Distillation of Natural Language Understanding with Confident Sinkhorns This repository provides an alternative method for ensembled distill

Deep Cognition and Language Research (DeCLaRe) Lab 11 Nov 16, 2022
Generative Handwriting using LSTM Mixture Density Network with TensorFlow

Generative Handwriting Demo using TensorFlow An attempt to implement the random handwriting generation portion of Alex Graves' paper. See my blog post

hardmaru 686 Nov 24, 2022
Standalone pre-training recipe with JAX+Flax

Sabertooth Sabertooth is standalone pre-training recipe based on JAX+Flax, with data pipelines implemented in Rust. It runs on CPU, GPU, and/or TPU, b

Nikita Kitaev 26 Nov 28, 2022