A two-stage U-Net for high-fidelity denoising of historical recordings

Overview

A two-stage U-Net for high-fidelity denoising of historical recordings

Official repository of the paper (not submitted yet):

E. Moliner and V. Välimäki,, "A two-stage U-Net for high-fidelity denosing of historical recordinds", in Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Singapore, May, 2022

Abstract

Enhancing the sound quality of historical music recordings is a long-standing problem. This paper presents a novel denoising method based on a fully-convolutional deep neural network. A two-stage U-Net model architecture is designed to model and suppress the degradations with high fidelity. The method processes the time-frequency representation of audio, and is trained using realistic noisy data to jointly remove hiss, clicks, thumps, and other common additive disturbances from old analog discs. The proposed model outperforms previous methods in both objective and subjective metrics. The results of a formal blind listening test show that the method can denoise real gramophone recordings with an excellent quality. This study shows the importance of realistic training data and the power of deep learning in audio restoration.

Schema represention

Listen to our audio samples

Requirements

You will need at least python 3.7 and CUDA 10.1 if you want to use GPU. See requirements.txt for the required package versions.

To install the environment through anaconda, follow the instructions:

conda env update -f environment.yml
conda activate historical_denoiser

Denoising Recordings

Run the following commands to clone the repository and install the pretrained weights of the two-stage U-Net model:

git clone https://github.com/eloimoliner/denoising-historical-recordings.git
cd denoising-historical-recordings
wget https://github.com/eloimoliner/denoising-historical-recordings/releases/download/v0.0/checkpoint.zip
unzip checkpoint.zip /experiments/trained_model/

If the environment is installed correctly, you can denoise an audio file by running:

bash inference.sh "file name"

A ".wav" file with the denoised version, as well as the residual noise and the original signal in "mono", will be generated in the same directory as the input file.

Training

TODO

Comments
  • Will it work in Windows without CUDA?

    Will it work in Windows without CUDA?

    Hello, The readme says: "You will need at least python 3.7 and CUDA 10.1 if you want to use GPU."

    Unfortunately, my first attempt to run it in Windows without CUDA-supporting VGA failed. There is really no separate environment file for CPU-only? Is it possible to make it work without massive changes to the code?

    opened by vitacon 15
  • installation without conda

    installation without conda

    Hi,

    could you leave some hints about how to install this without conda? Your readme appears to be very much specified to this one case. Also it seems that you develop under linux so you use bash to execute. Maybe here a hint for win- users would be cool too.

    I am just trying to get this to run under windows and so far had no success. I will update if I get further. All the best!

    opened by GitHubGeniusOverlord 9
  • strange tensorflow version in requirements.txt

    strange tensorflow version in requirements.txt

    Hi,

    when running python -m pip install tensorflow==2.3.0 as indicated in your requirements file, I get

    ERROR: Could not find a version that satisfies the requirement tensorflow==2.3.0 (from versions: 2.5.0rc0, 2.5.0rc1, 2.5.0rc2, 2.5.0rc3, 2.5.0, 2.5.1, 2.5.2, 2.6.0rc0, 2.6.0rc1, 2.6.0rc2, 2.6.0, 2.6.1, 2.6.2, 2.7.0rc0, 2.7.0rc1, 2.7.0, 2.8.0rc0) ERROR: No matching distribution found for tensorflow==2.3.0

    It seems this version isn't even supported by pip anymore. Upgrade to 2.5.0?

    The same is true for scipy==1.4.1. Not sure about which version to take there.

    opened by GitHubGeniusOverlord 3
  • Update inference.sh

    Update inference.sh

    Small change to allow spaces in file names. Bash expands the variable $1 correctly even if it is in double quotes, python receives a single argument and not (if there are spaces) multiple arguments.

    opened by JorenSix 1
  • How to start training for denoising?

    How to start training for denoising?

    If I would like to do a denoising task, where I've clean signals (in the "clean" folder) and noisy signals (in the "noise" folder).

    opened by listener17 1
Releases(v0.0)
Owner
Eloi Moliner Juanpere
Doctoral candidate on audio signal processing at Aalto university.
Eloi Moliner Juanpere
Simple node deletion tool for onnx.

snd4onnx Simple node deletion tool for onnx. I only test very miscellaneous and limited patterns as a hobby. There are probably a large number of bugs

Katsuya Hyodo 6 May 15, 2022
Use CLIP to represent video for Retrieval Task

A Straightforward Framework For Video Retrieval Using CLIP This repository contains the basic code for feature extraction and replication of results.

Jesus Andres Portillo Quintero 54 Dec 22, 2022
A Python library for common tasks on 3D point clouds

Point Cloud Utils (pcu) - A Python library for common tasks on 3D point clouds Point Cloud Utils (pcu) is a utility library providing the following fu

Francis Williams 622 Dec 27, 2022
Learning Synthetic Environments and Reward Networks for Reinforcement Learning

Learning Synthetic Environments and Reward Networks for Reinforcement Learning We explore meta-learning agent-agnostic neural Synthetic Environments (

AutoML-Freiburg-Hannover 16 Sep 02, 2022
Code to reproduce experiments in the paper "Explainability Requires Interactivity".

Explainability Requires Interactivity This repository contains the code to train all custom models used in the paper Explainability Requires Interacti

Digital Health & Machine Learning 5 Apr 07, 2022
Implementation of "Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis"

Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis Abstract: This work targets at using a general deep lea

163 Dec 14, 2022
Nvdiffrast - Modular Primitives for High-Performance Differentiable Rendering

Nvdiffrast – Modular Primitives for High-Performance Differentiable Rendering Modular Primitives for High-Performance Differentiable Rendering Samuli

NVIDIA Research Projects 675 Jan 06, 2023
Lightweight Face Image Quality Assessment

LightQNet This is a demo code of training and testing [LightQNet] using Tensorflow. Uncertainty Losses: IDQ loss PCNet loss Uncertainty Networks: Mobi

Kaen 5 Nov 18, 2022
Machine learning library for fast and efficient Gaussian mixture models

This repository contains code which implements the Stochastic Gaussian Mixture Model (S-GMM) for event-based datasets Dependencies CMake Premake4 Blaz

Omar Oubari 1 Dec 19, 2022
Official code of ICCV2021 paper "Residual Attention: A Simple but Effective Method for Multi-Label Recognition"

CSRA This is the official code of ICCV 2021 paper: Residual Attention: A Simple But Effective Method for Multi-Label Recoginition Demo, Train and Vali

163 Dec 22, 2022
A coin flip game in which you can put the amount of money below or equal to 1000 and then choose heads or tail

COIN_FLIPPY ##This is a simple example package. You can use Github-flavored Markdown to write your content. Coinflippy A coin flip game in which you c

2 Dec 26, 2021
Object detection GUI based on PaddleDetection

PP-Tracking GUI界面测试版 本项目是基于飞桨开源的实时跟踪系统PP-Tracking开发的可视化界面 在PaddlePaddle中加入pyqt进行GUI页面研发,可使得整个训练过程可视化,并通过GUI界面进行调参,模型预测,视频输出等,通过多种类型的识别,简化整体预测流程。 GUI界面

杨毓栋 68 Jan 02, 2023
Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression.

Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression. Not an official Google product. Me

Google Research 27 Dec 12, 2022
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
Customer-Transaction-Analysis - This analysis is based on a synthesised transaction dataset containing 3 months worth of transactions for 100 hypothetical customers.

Customer-Transaction-Analysis - This analysis is based on a synthesised transaction dataset containing 3 months worth of transactions for 100 hypothetical customers. It contains purchases, recurring

Ayodeji Yekeen 1 Jan 01, 2022
Equivariant Imaging: Learning Beyond the Range Space

[Project] Equivariant Imaging: Learning Beyond the Range Space Project about the

Georges Le Bellier 3 Feb 06, 2022
Creating Multi Task Models With Keras

Creating Multi Task Models With Keras About The Project! I used the keras and Tensorflow Library, To build a Deep Learning Neural Network to Creating

Srajan Chourasia 4 Nov 28, 2022
Research shows Google collects 20x more data from Android than Apple collects from iOS. Block this non-consensual telemetry using pihole blocklists.

pihole-antitelemetry Research shows Google collects 20x more data from Android than Apple collects from iOS. Block both using these pihole lists. Proj

Adrian Edwards 290 Jan 09, 2023
Semi-supervised semantic segmentation needs strong, varied perturbations

Semi-supervised semantic segmentation using CutMix and Colour Augmentation Implementations of our papers: Semi-supervised semantic segmentation needs

146 Dec 20, 2022
This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》

CoraNet This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》 Environment pytor

25 Nov 08, 2022