This is the pytorch implementation for the paper: *Learning Accurate Performance Predictors for Ultrafast Automated Model Compression*, which is in submission to TPAMI

Related tags

Deep LearningSeerNet
Overview

SeerNet

​ This is the pytorch implementation for the paper: Learning Accurate Performance Predictors for Ultrafast Automated Model Compression, which is in submission to TPAMI. This repo contains active sampling for training the performance predictor, optimizing the compression policy and finetuning on two datasets(VGG-small, ResNet20 on Cifar-10; ResNet18, MobileNetv2, ResNet50 on ImageNet) using our proposed SeerNet.

​ As for the entire pipeline, we firstly get a few random samples to pretrain the MLP predictor. After getting the pretrained predictor, we execute active sampling using evolution search to get samples, which are used to further optimize the predictor above. Then we search for optimal compression policy under given constraint utilizing the predictor. Finally, we finetune the policy until convergence.

Quick Start

Prerequisites

  • python>=3.5
  • pytorch>=1.1.0
  • torchvision>=0.3.0
  • other packages like numpy and sklearn

Dataset

If you already have the ImageNet dataset for pytorch, you could create a link to data folder and use it:

# prepare dataset, change the path to your own
ln -s /path/to/imagenet/ data/

If you don't have the ImageNet, you can use the following script to download it: https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh

Active Sampling

You can run the following command to actively search the samples by evolution algorithm:

CUDA_VISIBLE_DEVICES=0 python PGD/search.py --sample_path=results/res18/resnet18_sample.npy --acc_path=results/res18/resnet18_acc.npy --lr=0.2 --batch=400 --epoch=1000 --save_path=search_result.npy --dim=57

Training performance predictor

You can run the following command to training the MLP predictor:

CUDA_VISIBLE_DEVICES=0 python PGD/regression/regression.py --sample_path=../results/res18/resnet18_sample.npy --acc_path=../results/res18/resnet18_acc.npy --lr=0.2 --batch=400 --epoch=5000 --dim=57

Compression Policy Optimization

After training the performance predictor, you can run the following command to optimize the compression policy:


# for resnet18, please use
python PGD/pgd_search.py --arch qresnet18 --layer_nums 19 --step_size 0.005 --max_bops 30 --pretrained_weight path\to\weight 


# for mobilenetv2, please use
python PGD/pgd_search.py --arch qmobilenetv2 --layer_nums 53 --step_size 0.005 --max_bops 8 --pretrained_weight path\to\weight 


# for resnet50, please use
python PGD/pgd_search.py --arch qresnet50 --layer_nums 52 --step_size 0.005 --max_bops 65 --pretrained_weight path\to\weight 

Finetune Policy

After optimizing, you can get the optimal quantization and pruning strategy list, and you can replace the strategy list in finetune_imagenet.py to finetune and evaluate the performance on ImageNet dataset. You can also use the default strategy to reproduce the results in our paper.

For finetuning ResNet18 on ImageNet, please run:

bash run/finetune_resnet18.sh

For finetuning MobileNetv2 on ImageNet, please run:

bash run/finetune_mobilenetv2.sh

For finetuning ResNet50 on ImageNet, please run:

bash run/finetune_resnet50.sh
Owner
IVG Lab, Department of Automation, Tsinghua Univeristy
Boundary IoU API (Beta version)

Boundary IoU API (Beta version) Bowen Cheng, Ross Girshick, Piotr Dollár, Alexander C. Berg, Alexander Kirillov [arXiv] [Project] [BibTeX] This API is

Bowen Cheng 177 Dec 29, 2022
PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge"

FSGAN Here is the official PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge". This project achieve the translation between

Deng-Ping Fan 32 Oct 10, 2022
Personals scripts using ageitgey/face_recognition

HOW TO USE pip3 install requirements.txt Add some pictures of known people in the folder 'people' : a) Create a folder called by the name of the perso

Antoine Bollengier 1 Jan 06, 2022
Fuzzer for Linux Kernel Drivers

difuze: Fuzzer for Linux Kernel Drivers This repo contains all the sources (including setup scripts), you need to get difuze up and running. Tested on

seclab 344 Dec 27, 2022
Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Muhammad Maaz 206 Jan 04, 2023
PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules

Dynamic Routing Between Capsules - PyTorch implementation PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules from Sara Sabour,

Adam Bielski 475 Dec 24, 2022
Unofficial Tensorflow-Keras implementation of Fastformer based on paper [Fastformer: Additive Attention Can Be All You Need](https://arxiv.org/abs/2108.09084).

Fastformer-Keras Unofficial Tensorflow-Keras implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Tensorflo

Yam Peleg 10 Jan 30, 2022
Experiments on continual learning from a stream of pretrained models.

Ex-model CL Ex-model continual learning is a setting where a stream of experts (i.e. model's parameters) is available and a CL model learns from them

Antonio Carta 6 Dec 04, 2022
[ArXiv 2021] Data-Efficient Instance Generation from Instance Discrimination

InsGen - Data-Efficient Instance Generation from Instance Discrimination Data-Efficient Instance Generation from Instance Discrimination Ceyuan Yang,

GenForce: May Generative Force Be with You 93 Dec 25, 2022
Orbivator AI - To Determine which features of data (measurements) are most important for diagnosing breast cancer and find out if breast cancer occurs or not.

Orbivator_AI Breast Cancer Wisconsin (Diagnostic) GOAL To Determine which features of data (measurements) are most important for diagnosing breast can

anurag kumar singh 1 Jan 02, 2022
Evaluation Pipeline for our ECCV2020: Journey Towards Tiny Perceptual Super-Resolution.

Journey Towards Tiny Perceptual Super-Resolution Test code for our ECCV2020 paper: https://arxiv.org/abs/2007.04356 Our x4 upscaling pre-trained model

Royson 6 Mar 30, 2022
This repository consists of Blender python scripts and corresponding assets to generate variants of the CANDLE dataset

candle-simulator This repository consists of Blender python scripts and corresponding assets to generate variants of the IITH-CANDLE dataset. The rend

1 Dec 15, 2021
Face Recognition Attendance Project

Face-Recognition-Attendance-Project In This Project You will learn how to mark attendance using face recognition, Hello Guys This is Gautam Kumar, Thi

Gautam Kumar 1 Dec 03, 2022
Simple-Image-Classification - Simple Image Classification Code (PyTorch)

Simple-Image-Classification Simple Image Classification Code (PyTorch) Yechan Kim This repository contains: Python3 / Pytorch code for multi-class ima

Yechan Kim 8 Oct 29, 2022
The Power of Scale for Parameter-Efficient Prompt Tuning

The Power of Scale for Parameter-Efficient Prompt Tuning Implementation of soft embeddings from https://arxiv.org/abs/2104.08691v1 using Pytorch and H

Kip Parker 208 Dec 30, 2022
Pseudo-rng-app - whos needs science to make a random number when you have pseudoscience?

Pseudo-random numbers with pseudoscience rng is so complicated! Why cant we have a horoscopic, vibe-y way of calculating a random number? Why cant rng

Andrew Blance 1 Dec 27, 2021
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
[ICCV 2021 (oral)] Planar Surface Reconstruction from Sparse Views

Planar Surface Reconstruction From Sparse Views Linyi Jin, Shengyi Qian, Andrew Owens, David F. Fouhey University of Michigan ICCV 2021 (Oral) This re

Linyi Jin 89 Jan 05, 2023
Codebase for testing whether hidden states of neural networks encode discrete structures.

structural-probes Codebase for testing whether hidden states of neural networks encode discrete structures. Based on the paper A Structural Probe for

John Hewitt 349 Dec 17, 2022
A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation

Paper Khoi Nguyen, Sinisa Todorovic "A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation", accepted to ICCV 2021 Our code is mai

Khoi Nguyen 5 Aug 14, 2022