Code and data for ImageCoDe, a contextual vison-and-language benchmark

Overview

ImageCoDe

arxiv

This repository contains code and data for ImageCoDe: Image Retrieval from Contextual Descriptions.

Example

Data

All collected descriptions for the training and validation set are under data/train_data.json and data/valid_data.json.

Image sets can be downloaded on Zenodo or GoogleDrive and should be unzipped in data/.

You can download from the commandline via:

wget https://zenodo.org/record/6518944/files/image-sets.zip

For ViLBERT experiments, you need to download a pretrained ViLBERT checkpoint from volta here, simply by clicking on ViLBERT in the table. Save the downloaded file as baselines/vilbert/vilbert-pretrained.bin. Since ViLBERT uses image features from Faster R-CNN, you also have to downloaded these for all ImageCoDe images here: Google Drive link. Save the file as data/rcnn-features36-36.lmdb. The same procedure applies for UNITER.

The format for data/train_data.json looks like this:

{
  "MSR-VTT-videoTrainValVideo_video2044-shot1_0": {
    "6": "a mom holding her babies in the middle of the picture, no other image intervenes with the image.",
    "7": "The image is fading between a woman holding a baby and a woman sitting with a red background. The hands of the woman sitting aren't visible."
  },
  "video-storytelling-videochristmas_56Nm66j-i5Q-shot14_2": {
  "..."
  }
}

And the images under data/ have the following structure. Each folder contains 10 images. If the images are video frames, the number X in imgX.jpg indicates the frame number:

  .
  ├── MSR-VTT-videoTrainValVideo_video2044-shot1_0
      │   ├── img0.jpg
      │   ├── img7.jpg
      │   ├── ...
  ├── video-storytelling-videochristmas_56Nm66j-i5Q-shot14_2
      │   ├── ...

Leaderboard

Based on this you can train your model and test on the unlabeled test set:

{
  "MSR-VTT-videoTestVideo_video7763-shot2_1": [
    "The team name on shirt is visible without a number, but all letters can be seen for team name.",
    "the player can be seen with him on the left close to the logo on the pitch on the right and can be clearly seen"
  ],
  "...":
  ["..."]
}

In order to appear on the leaderboard, please format your results in the following format:

{
  "MSR-VTT-videoTestVideo_video7763-shot2_1": [
    1,
    2
  ],
  "...":
  ["..."]
}

Where the example here with "1" and "2" represent image indices ranging from 0 to 9. You can submit to the leaderboard by sending your test set file (or a download link) to [email protected] and we will update the leaderboard quickly (max. 1-2 days). The leaderboard is maintained on the project website and might change its submission procedure at some point.

Installations

Run install.sh for running CLIP experiments. For VilBERT follow the instructions for volta.

Code

Code for CLIP is under baselines/clip and and code for ViLBERT/UNITER is under baselines/crossencoders.

For details commands to run each model variant shown in the paper, have a look at the README in baselines.

For example to train the best performing model CLIP+TemporalEmbeddings, run:

python3 contextual.py --lr 2e-6 --lr_head 1e-4 -b 36 -m ViT-B/16 --fusion mult -a gelu --logit_scale 1000 --finetuned_checkpoint_path checkpoints/CONTRA_clip_best__36_4e-06_30_1395526.pt --add_input --frozen_clip --positional

Data Analysis

Our manual annotation of various phenomena (negation, nuances, ...) in our validation set can be found under data/manual_annotation_valid.yaml

License

This work is licensed under the MIT license. See LICENSE for details. Third-party software and data sets are subject to their respective licenses.
If you want to cite our paper, please use:

@inproceedings{krojer_contextual_2022,
  address = {Online},
  title = {Image Retrieval from Contextual Descriptions},
  booktitle = {Proceedings of the 60th {Annual} {Meeting} of the {Association} for {Computational} {Linguistics},
  publisher = {Association for Computational Linguistics},
  author = {Krojer, Benno and Adlakha, Vaibhav and Vineet, Vibhav and Goyal, Yash and Ponti, Edoardo and Reddy, Siva},
  month = may,
  year = {2022},
}

Acknowledgement

Our data (specifically the image sets) are built upon 3 video dataset and Open Images:

We also the volta repository for ViLBERT and UNITER baseline variants

For questions or feedback, don't hesitate to contact the author: [email protected]

Owner
McGill NLP
Research group within McGill University and Mila focusing on various topics in natural language processing.
McGill NLP
Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER (WIP) Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEER is an e

Alipay 6 Dec 17, 2022
Code for "Long Range Probabilistic Forecasting in Time-Series using High Order Statistics"

Long Range Probabilistic Forecasting in Time-Series using High Order Statistics This is the code produced as part of the paper Long Range Probabilisti

16 Dec 06, 2022
[CIKM 2021] Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. This repo contains the PyTorch code and implementation for the paper E

Akuchi 18 Dec 22, 2022
Residual Pathway Priors for Soft Equivariance Constraints

Residual Pathway Priors for Soft Equivariance Constraints This repo contains the implementation and the experiments for the paper Residual Pathway Pri

Marc Finzi 13 Oct 12, 2022
ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction

ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction. NeurIPS 2021.

Gengshan Yang 59 Nov 25, 2022
Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch

Perceiver - Pytorch Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch Install $ pip install perceiver-pytorch Usage

Phil Wang 876 Dec 29, 2022
Neural Dynamic Policies for End-to-End Sensorimotor Learning

This is a PyTorch based implementation for our NeurIPS 2020 paper on Neural Dynamic Policies for end-to-end sensorimotor learning.

Shikhar Bahl 47 Dec 11, 2022
ColBERT: Contextualized Late Interaction over BERT (SIGIR'20)

Update: if you're looking for ColBERTv2 code, you can find it alongside a new simpler API, in the branch new_api. ColBERT ColBERT is a fast and accura

Stanford Future Data Systems 637 Jan 08, 2023
Unsupervised 3D Human Mesh Recovery from Noisy Point Clouds

Unsupervised 3D Human Mesh Recovery from Noisy Point Clouds Xinxin Zuo, Sen Wang, Minglun Gong, Li Cheng Prerequisites We have tested the code on Ubun

41 Dec 12, 2022
a general-purpose Transformer based vision backbone

Swin Transformer By Ze Liu*, Yutong Lin*, Yue Cao*, Han Hu*, Yixuan Wei, Zheng Zhang, Stephen Lin and Baining Guo. This repo is the official implement

Microsoft 9.9k Jan 08, 2023
An auto discord account and token generator. Automatically verifies the phone number. Works without proxy. Bypasses captcha.

JOIN DISCORD SERVER https://discord.gg/uAc3agBY FREE HCAPTCHA SOLVING API Discord-Token-Gen An auto discord token generator. Auto verifies phone numbe

3kp 271 Jan 01, 2023
PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi

PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi PIKA is a lightweight speech processing toolkit based on Pytorch and (Py)

336 Nov 25, 2022
HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives

HashNeRF-pytorch Instant-NGP recently introduced a Multi-resolution Hash Encodin

Yash Sanjay Bhalgat 616 Jan 06, 2023
2.86% and 15.85% on CIFAR-10 and CIFAR-100

Shake-Shake regularization This repository contains the code for the paper Shake-Shake regularization. This arxiv paper is an extension of Shake-Shake

Xavier Gastaldi 294 Nov 22, 2022
Meta-learning for NLP

Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks Code for training the meta-learning models and fine-tuning on downstr

IESL 43 Nov 08, 2022
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Video Object Segmentation Language as Queries for Referring Video Object S

Jonas Wu 232 Dec 29, 2022
This is the source code of the 1st place solution for segmentation task (with Dice 90.32%) in 2021 CCF BDCI challenge.

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
Official PyTorch implementation and pretrained models of the paper Self-Supervised Classification Network

Self-Classifier: Self-Supervised Classification Network Official PyTorch implementation and pretrained models of the paper Self-Supervised Classificat

Elad Amrani 24 Dec 21, 2022
Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Phil Wang 383 Jan 02, 2023
Xi Dongbo 78 Nov 29, 2022