Code for the paper "SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness" (NeurIPS 2021)

Overview

SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness (NeurIPS2021)

This repository contains code for the paper "SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness" by Jongheon Jeong, Sejun Park, Minkyu Kim, Heung-Chang Lee, Doguk Kim and Jinwoo Shin.

Dependencies

conda create -n smoothmix python=3.7
conda activate smoothmix

# Below is for linux, with CUDA 11.1; see https://pytorch.org/ for the correct command for your system
conda install pytorch torchvision cudatoolkit=11.1 -c pytorch -c nvidia

conda install scipy pandas statsmodels matplotlib seaborn
pip install tensorboardX

Scripts

Training Scripts

Our code is built upon a previous codebase from several baselines considered in the paper (Cohen et al (2019); Salman et al (2019); Jeong and Shin (2020)). The main script is code/train.py, and the sample scripts below demonstrate how to run code/train.py. One can modify CUDA_VISIBLE_DEVICES to further specify GPU number(s) to work on.

# SmoothMix (Ours): MNIST, w/ one-step adversary, eta=5.0 
CUDA_VISIBLE_DEVICES=0 python code/train.py mnist lenet --lr 0.01 --lr_step_size 30 --epochs 90  --noise 1.0 \
--num-noise-vec 4 --eta 5.0 --num-steps 8 --alpha 1.0 --mix_step 1 --id 0

For a more detailed instruction to reproduce our experiments, see EXPERIMENTS.MD.

Testing Scripts

All the testing scripts is originally from https://github.com/locuslab/smoothing:

  • The script certify.py certifies the robustness of a smoothed classifier. For example,

python code/certify.py mnist model_output_dir/checkpoint.pth.tar 0.50 certification_output --alpha 0.001 --N0 100 --N 100000

will load the base classifier saved at model_output_dir/checkpoint.pth.tar, smooth it using noise level σ=0.50, and certify the MNIST test set with parameters N0=100, N=100000, and alpha=0.001.

  • The script predict.py makes predictions using a smoothed classifier. For example,

python code/predict.py mnist model_output_dir/checkpoint.pth.tar 0.50 prediction_outupt --alpha 0.001 --N 1000

will load the base classifier saved at model_output_dir/checkpoint.pth.tar, smooth it using noise level σ=0.50, and classify the MNIST test set with parameters N=1000 and alpha=0.001.

Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
Alphabetical Letter Recognition

DecisionTrees-Image-Classification Alphabetical Letter Recognition In these demo we are using "Decision Trees" Our database is composed by Learning Im

Mohammed Firass 4 Nov 30, 2021
Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)

Few-shot Image Generation via Cross-domain Correspondence Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A. Efros, Yong Jae Lee, Eli Shechtman, Richard Zh

Utkarsh Ojha 251 Dec 11, 2022
How to Leverage Multimodal EHR Data for Better Medical Predictions?

How to Leverage Multimodal EHR Data for Better Medical Predictions? This repository contains the code of the paper: How to Leverage Multimodal EHR Dat

13 Dec 13, 2022
Python scripts for performing stereo depth estimation using the MobileStereoNet model in Tensorflow Lite.

TFLite-MobileStereoNet Python scripts for performing stereo depth estimation using the MobileStereoNet model in Tensorflow Lite. Stereo depth estimati

Ibai Gorordo 4 Feb 14, 2022
A program that uses computer vision to detect hand gestures, used for controlling movie players.

HandGestureDetection This program uses a Haar Cascade algorithm to detect the presence of your hand, and then passes it on to a self-created and self-

2 Nov 22, 2022
Deep learning library featuring a higher-level API for TensorFlow.

TFLearn: Deep learning library featuring a higher-level API for TensorFlow. TFlearn is a modular and transparent deep learning library built on top of

TFLearn 9.6k Jan 02, 2023
a generic C++ library for image analysis

VIGRA Computer Vision Library Copyright 1998-2013 by Ullrich Koethe This file is part of the VIGRA computer vision library. You may use,

Ullrich Koethe 378 Dec 30, 2022
Identifying a Training-Set Attack’s Target Using Renormalized Influence Estimation

Identifying a Training-Set Attack’s Target Using Renormalized Influence Estimation By: Zayd Hammoudeh and Daniel Lowd Paper: Arxiv Preprint Coming soo

Zayd Hammoudeh 2 Oct 08, 2022
MagFace: A Universal Representation for Face Recognition and Quality Assessment

MagFace MagFace: A Universal Representation for Face Recognition and Quality Assessment in IEEE Conference on Computer Vision and Pattern Recognition

Qiang Meng 523 Jan 05, 2023
ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation

ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation This repository provides a PyTorch implementation of ADSPM. Requirements Pyth

24 Jul 24, 2022
An Extendible (General) Continual Learning Framework based on Pytorch - official codebase of Dark Experience for General Continual Learning

Mammoth - An Extendible (General) Continual Learning Framework for Pytorch NEWS STAY TUNED: We are working on an update of this repository to include

AImageLab 277 Dec 28, 2022
Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation

Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation By Qiang Zhou*, Zilong Huang*, Lichao Huang, Han Shen, Yon

Forest 117 Apr 01, 2022
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images

BlockGAN Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images BlockGAN: Learning 3D Object-aware Scene Rep

41 May 18, 2022
Temporal Segment Networks (TSN) in PyTorch

TSN-Pytorch We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation for TSN as well as oth

1k Jan 03, 2023
Unofficial PyTorch code for BasicVSR

Dependencies and Installation The code is based on BasicSR, Please install the BasicSR framework first. Pytorch=1.51 Training cd ./code CUDA_VISIBLE_

Long 59 Dec 06, 2022
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 02, 2023
Pytorch GUI(demo) for iVOS(interactive VOS) and GIS (Guided iVOS)

GUI for iVOS(interactive VOS) and GIS (Guided iVOS) GUI Implementation of CVPR2021 paper "Guided Interactive Video Object Segmentation Using Reliabili

Yuk Heo 13 Dec 09, 2022
Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models

Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models This repo contains a barebones implementation for the atta

16 Dec 04, 2022