Implementation of "Deep Implicit Templates for 3D Shape Representation"

Overview

Deep Implicit Templates for 3D Shape Representation

Zerong Zheng, Tao Yu, Qionghai Dai, Yebin Liu. arXiv 2020.

This repository is an implementation for Deep Implicit Templates. Full paper is available here.

Teaser Image

Citing DIT

If you use DIT in your research, please cite the paper:

@misc{zheng2020dit,
title={Deep Implicit Templates for 3D Shape Representation},
author={Zheng, Zerong and Yu, Tao and Dai, Qionghai and Liu, Yebin},
year={2020},
eprint={2011.14565},
archivePrefix={arXiv},
primaryClass={cs.CV}
}

Requirements

  • Ubuntu 18.04
  • Pytorch (tested on 1.7.0)
  • plyfile
  • matplotlib
  • ninja
  • pathos
  • tensorboardX
  • pyrender

Demo

This repo contains pre-trained models for cars, chairs, airplanes and sofas. After cloning the code repo, please run the following commands to generate the sofa template as well as 20 training sofa meshes with the color-coded canonical coordinates (i.e., the correspondences between the template and the meshes).

GPU_ID=0
CUDA_VISIBLE_DEVICES=${GPU_ID} python generate_template_mesh.py -e pretrained/sofas_dit --debug 
CUDA_VISIBLE_DEVICES=${GPU_ID} python generate_training_meshes.py -e pretrained/sofas_dit --debug --start_id 0 --end_id 20 --octree --keep_normalization
CUDA_VISIBLE_DEVICES=${GPU_ID} python generate_meshes_correspondence.py -e pretrained/sofas_dit --debug --start_id 0 --end_id 20

The canonical coordinates are stored as float RGB values in .ply files. You can render the color-coded meshes for visualization by running:

python render_correspondences.py  -i pretrained/sofas_dit/TrainingMeshes/2000/ShapeNet/[....].ply

Data Preparation

Please follow original setting of DeepSDF to prepare the SDF data in ./data folder.

Traing and Evaluation

After preparing the data following DeepSDF, you can train the model as:

GPU_ID=0
preprocessed_data_dir=./data
CUDA_VISIBLE_DEVICES=${GPU_ID} python train_deep_implicit_templates.py -e examples/sofas_dit --debug --batch_split 2 -c latest -d ${preprocessed_data_dir}

To evaluate the reconstruction accuracy (Tab.2 in our paper), please run:

GPU_ID=0
preprocessed_data_dir=./data
CUDA_VISIBLE_DEVICES=${GPU_ID} python reconstruct_deep_implicit_templates.py -e examples/sofas_dit -c 2000 --split examples/splits/sv2_sofas_test.json -d ${preprocessed_data_dir} --skip --octree
CUDA_VISIBLE_DEVICES=${GPU_ID} python evaluate.py -e examples/sofas_dit -c 2000 -s examples/splits/sv2_sofas_test.json -d ${preprocessed_data_dir} --debug

Due the the randomness of the points sampled from the meshes, the numeric results will vary across multiple reruns of the same shape, and will likely differ from those produced in the paper.

More evaluation code is coming.

Acknowledgements

This code repo is heavily based on DeepSDF. We thank the authors for their great job!

License

DeepSDF is relased under the MIT License. See the [LICENSE file][5] for more details.

Owner
Zerong Zheng
期待你发现
Zerong Zheng
Source code of our BMVC 2021 paper: AniFormer: Data-driven 3D Animation with Transformer

AniFormer This is the PyTorch implementation of our BMVC 2021 paper AniFormer: Data-driven 3D Animation with Transformer. Haoyu Chen, Hao Tang, Nicu S

24 Nov 02, 2022
PyTorch implementation for MINE: Continuous-Depth MPI with Neural Radiance Fields

MINE: Continuous-Depth MPI with Neural Radiance Fields Project Page | Video PyTorch implementation for our ICCV 2021 paper. MINE: Towards Continuous D

Zijian Feng 325 Dec 29, 2022
Official implementation of the paper "Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering"

Light Field Networks Project Page | Paper | Data | Pretrained Models Vincent Sitzmann*, Semon Rezchikov*, William Freeman, Joshua Tenenbaum, Frédo Dur

Vincent Sitzmann 130 Dec 29, 2022
Code accompanying our NeurIPS 2021 traffic4cast challenge

Traffic forecasting on traffic movie snippets This repo contains all code to reproduce our approach to the IARAI Traffic4cast 2021 challenge. In the c

Nina Wiedemann 2 Aug 09, 2022
Code & Models for 3DETR - an End-to-end transformer model for 3D object detection

3DETR: An End-to-End Transformer Model for 3D Object Detection PyTorch implementation and models for 3DETR. 3DETR (3D DEtection TRansformer) is a simp

Facebook Research 487 Dec 31, 2022
VM3000 Microphones

VM3000-Microphones This project was completed by Ricky Leman under the supervision of Dr Ben Travaglione and Professor Melinda Hodkiewicz as part of t

UWA System Health Lab 0 Jun 04, 2021
A framework for the elicitation, specification, formalization and understanding of requirements.

A framework for the elicitation, specification, formalization and understanding of requirements.

NASA - Software V&V 161 Jan 03, 2023
PyTorch implementation of Algorithm 1 of "On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models"

Code for On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models This repository will reproduce the main results from our pape

Mitch Hill 32 Nov 25, 2022
GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

22 Dec 12, 2022
The world's largest toxicity dataset.

The Toxicity Dataset by Surge AI Saving the internet is fun. Combing through thousands of online comments to build a toxicity dataset isn't. That's wh

Surge AI 134 Dec 19, 2022
RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth, in ICCV 2021 (oral)

RINDNet RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth Mengyang Pu, Yaping Huang, Qingji Guan and Haibin Lin

Mengyang Pu 75 Dec 15, 2022
pcnaDeep integrates cutting-edge detection techniques with tracking and cell cycle resolving models.

pcnaDeep: a deep-learning based single-cell cycle profiler with PCNA signal Welcome! pcnaDeep integrates cutting-edge detection techniques with tracki

ChanLab 8 Oct 18, 2022
PyTorch implementation of Soft-DTW: a Differentiable Loss Function for Time-Series in CUDA

Soft DTW Loss Function for PyTorch in CUDA This is a Pytorch Implementation of Soft-DTW: a Differentiable Loss Function for Time-Series which is batch

Keon Lee 76 Dec 20, 2022
:boar: :bear: Deep Learning based Python Library for Stock Market Prediction and Modelling

bulbea "Deep Learning based Python Library for Stock Market Prediction and Modelling." Table of Contents Installation Usage Documentation Dependencies

Achilles Rasquinha 1.8k Jan 05, 2023
nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation "

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
coldcuts is an R package to automatically generate and plot segmentation drawings in R

coldcuts coldcuts is an R package that allows you to draw and plot automatically segmentations from 3D voxel arrays. The name is inspired by one of It

2 Sep 03, 2022
Final project for machine learning (CSC 590). Detection of hepatitis C and progression through blood samples.

Hepatitis C Blood Based Detection Final project for machine learning (CSC 590). Dataset from Kaggle. Using data from previous hepatitis C blood panels

Jennefer Maldonado 1 Dec 28, 2021
The ICS Chat System project for NYU Shanghai Fall 2021

ICS_Chat_System [Catenger] This is the ICS Chat System project for NYU Shanghai Fall 2021 Creators: Shavarsh Melikyan, Skyler Chen and Arghya Sarkar,

1 Dec 20, 2021
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Ritchie Ng 9.2k Jan 02, 2023
AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning

AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning (NeurIPS 2020) Introduction AdaShare is a novel and differentiable approach fo

94 Dec 22, 2022