code for the ICLR'22 paper: On Robust Prefix-Tuning for Text Classification

Overview

On Robust Prefix-Tuning for Text Classification

Prefix-tuning has drawed much attention as it is a parameter-efficient and modular alternative to adapting pretrained language models to downstream tasks. However, we find that prefix-tuning suffers from adversarial attacks. While, unfortunately, current robust NLP methods are unsuitable for prefix-tuning as they will inevitably hamper the modularity of prefix-tuning. In our ICLR'22 paper, we propose robust prefix-tuning for text classification. Our method leverages the idea of test-time tuning, which preserves the strengths of prefix-tuning and improves its robustness at the same time. This repository contains the code for the proposed robust prefix-tuning method.

Prerequisite

PyTorch>=1.2.0, pytorch-transformers==1.2.0, OpenAttack==2.0.1, and GPUtil==1.4.0.

Train the original prefix P_θ

For the training phase of standard prefix-tuning, the command is:

  source train.sh --preseqlen [A] --learning_rate [B] --tasks [C] --n_train_epochs [D] --device [E]

where

  • [A]: The length of the prefix P_θ.
  • [B]: The (initial) learning rate.
  • [C]: The benchmark. Default: sst.
  • [D]: The total epochs during training.
  • [E]: The id of the GPU to be used.

We can also use adversarial training to improve the robustness of the prefix. For the training phase of adversarial prefix-tuning, the command is:

  source train_adv.sh --preseqlen [A] --learning_rate [B] --tasks [C] --n_train_epochs [D] --device [E] --pgd_ball [F]

where

  • [A]~[E] have the same meanings with above.
  • [F]: where norm ball is word-wise or sentence-wise.

Note that the DATA_DIR and MODEL_DIR in train_adv.sh are different from those in train.sh. When experimenting with the adversarially trained prefix P_θ's in the following steps, remember to switch the DATA_DIR and MODEL_DIR in the corresponding scripts as well.

Generate Adversarial Examples

We use the OpenAttack package to generate in-sentence adversaries. The command is:

  source generate_adv_insent.sh --preseqlen [A] --learning_rate [B] --tasks [C] --device [E] --test_ep [G] --attack [H]

where

  • [A],[B],[C],[E] have the same meanings with above.
  • [G]: Load the prefix P_θ parameters trained for [G] epochs for testing. We set G=D.
  • [H]: Generate adversarial examples based on clean test set with the in-sentence attack [H].

We also implement the Universal Adversarial Trigger attack. The command is:

  source generate_adv_uat.sh --preseqlen [A] --learning_rate [B] --tasks [C] --device [E] --test_ep [G] --attack clean-[H2] --uat_len [I] --uat_epoch [J]

where

  • [A],[B],[C],[E],[G] have the same meanings with above.
  • [H2]: We should search for UATs for each class in the benchmark, and H2 indicates the class id. H2=0/1 for SST, 0/1/2/3 for AG News, and 0/1/2 for SNLI.
  • [I]: The length of the UAT.
  • [J]: The epochs for exploiting UAT.

Test the performance of P_θ

The command for performance testing of P_θ under clean data and in-sentence attacks is:

  source test_prefix_theta_insent.sh --preseqlen [A] --learning_rate [B] --tasks [C] --device [E] --test_ep [G] --attack [H] --test_batch_size [K]

Under UAT attack, the test command is:

  source test_prefix_theta_uat.sh --preseqlen [A] --learning_rate [B] --tasks [C] --device [E] --test_ep [G] --attack clean --uat_len [I] --test_batch_size [K]

where

  • [A]~[I] have the same meanings with above.
  • [K]: The test batch size. when K=0, the batch size is adaptive (determined by GPU memory); when K>0, the batch size is fixed.

Robust Prefix P'_ψ: Constructing the canonical manifolds

By constructing the canonical manifolds with PCA, we get the projection matrices. The command is:

  source get_proj.sh --preseqlen [A] --learning_rate [B] --tasks [C] --device [E] --test_ep [G]

where [A]~[G] have the same meanings with above.

Robust Prefix P'_ψ: Test its performance

Under clean data and in-sentence attacks, the command is:

  source test_robust_prefix_psi_insent.sh --preseqlen [A] --learning_rate [B] --tasks [C] --device [E] --test_ep [G] --attack [H] --test_batch_size [K] --PMP_lr [L] --PMP_iter [M]

Under UAT attack, the test command is:

  source test_robust_prefix_psi_uat.sh --preseqlen [A] --learning_rate [B] --tasks [C] --device [E] --test_ep [G] --attack clean --uat_len [I] --test_batch_size [K] --PMP_lr [L] --PMP_iter [M]

where

  • [A]~[K] have the same meanings with above.
  • [L]: The learning rate for test-time P'_ψ tuning.
  • [M]: The iterations for test-time P'_ψ tuning.

Running Example

# Train the original prefix P_θ
source train.sh --tasks sst --n_train_epochs 100 --device 0
source train_adv.sh --tasks sst --n_train_epochs 100 --device 1 --pgd_ball word

# Generate Adversarial Examples
source generate_adv_insent.sh --tasks sst --device 0 --test_ep 100 --attack bug
source generate_adv_uat.sh --tasks sst --device 0 --test_ep 100 --attack clean-0 --uat_len 3 --uat_epoch 10
source generate_adv_uat.sh --tasks sst --device 0 --test_ep 100 --attack clean-1 --uat_len 3 --uat_epoch 10

# Test the performance of P_θ
source test_prefix_theta_insent.sh --tasks sst --device 0 --test_ep 100 --attack bug --test_batch_size 0
source test_prefix_theta_uat.sh --tasks sst --device 0 --test_ep 100 --attack clean --uat_len 3 --test_batch_size 0

# Robust Prefix P'_ψ: Constructing the canonical manifolds
source get_proj.sh --tasks sst --device 0 --test_ep 100

# Robust Prefix P'_ψ: Test its performance
source test_robust_prefix_psi_insent.sh --tasks sst --device 0 --test_ep 100 --attack bug --test_batch_size 0 --PMP_lr 0.15 --PMP_iter 10
source test_robust_prefix_psi_uat.sh --tasks sst --device 0 --test_ep 100 --attack clean --uat_len 3 --test_batch_size 0 --PMP_lr 0.05 --PMP_iter 10

Released Data & Models

The training the original prefix P_θ and the process of generating adversarial examples can be time-consuming. As shown in our paper, the adversarial prefix-tuning is particularly slow. Efforts need to be paid on generating adversaries as well, since different attacks are to be performed on the test set based on each trained prefix. We also found that OpenAttack is now upgraded to v2.1.1, which causes compatibility issues in our codes (test_prefix_theta_insent.py).

In order to facilitate research on the robustness of prefix-tuning, we release the prefix checkpoints P_θ (with both std. and adv. training), the processed test sets that are perturbed by in-sentence attacks (including PWWS and TextBugger), as well as the generated projection matrices of the canonical manifolds in our runs for reproducibility and further enhancement. We have also hard-coded the exploited UAT tokens in test_prefix_theta_uat.py and test_robust_prefix_psi_uat.py. All the materials can be found here.

Acknowledgements:

The implementation of robust prefix tuning is based on the LAMOL repo, which is the code of LAMOL: LAnguage MOdeling for Lifelong Language Learning that studies NLP lifelong learning with GPT-style pretrained language models.

Bibtex

If you find this repository useful for your research, please consider citing our work:

@inproceedings{
  yang2022on,
  title={On Robust Prefix-Tuning for Text Classification},
  author={Zonghan Yang and Yang Liu},
  booktitle={International Conference on Learning Representations},
  year={2022},
  url={https://openreview.net/forum?id=eBCmOocUejf}
}
Owner
Zonghan Yang
Graduate student in Tsinghua University. Two drifters, off to see the world - there's such a lot of world to see...
Zonghan Yang
This repository contains PyTorch code for Robust Vision Transformers.

This repository contains PyTorch code for Robust Vision Transformers.

117 Dec 07, 2022
A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.

About This repository provides data and code for the paper: Scalable Data Annotation Pipeline for High-Quality Large Speech Datasets Development (subm

Appen Repos 86 Dec 07, 2022
Unsupervised captioning - Code for Unsupervised Image Captioning

Unsupervised Image Captioning by Yang Feng, Lin Ma, Wei Liu, and Jiebo Luo Introduction Most image captioning models are trained using paired image-se

Yang Feng 207 Dec 24, 2022
A PyTorch implementation of deep-learning-based registration

DiffuseMorph Implementation A PyTorch implementation of deep-learning-based registration. Requirements OS : Ubuntu / Windows Python 3.6 PyTorch 1.4.0

24 Jan 03, 2023
Image augmentation library in Python for machine learning.

Augmentor is an image augmentation library in Python for machine learning. It aims to be a standalone library that is platform and framework independe

Marcus D. Bloice 4.8k Jan 07, 2023
Implement slightly different caffe-segnet in tensorflow

Tensorflow-SegNet Implement slightly different (see below for detail) SegNet in tensorflow, successfully trained segnet-basic in CamVid dataset. Due t

Tseng Kuan Lun 364 Oct 27, 2022
TextBPN Adaptive Boundary Proposal Network for Arbitrary Shape Text Detection

TextBPN Adaptive Boundary Proposal Network for Arbitrary Shape Text Detection; Accepted by ICCV2021. Note: The complete code (including training and t

S.X.Zhang 84 Dec 13, 2022
Official code for the publication "HyFactor: Hydrogen-count labelled graph-based defactorization Autoencoder".

HyFactor Graph-based architectures are becoming increasingly popular as a tool for structure generation. Here, we introduce a novel open-source archit

Laboratoire-de-Chemoinformatique 11 Oct 10, 2022
The personal repository of the work: *DanceNet3D: Music Based Dance Generation with Parametric Motion Transformer*.

DanceNet3D The personal repository of the work: DanceNet3D: Music Based Dance Generation with Parametric Motion Transformer. Dataset and Results Pleas

南嘉Nanga 36 Dec 21, 2022
Official PyTorch code for "BAM: Bottleneck Attention Module (BMVC2018)" and "CBAM: Convolutional Block Attention Module (ECCV2018)"

BAM and CBAM Official PyTorch code for "BAM: Bottleneck Attention Module (BMVC2018)" and "CBAM: Convolutional Block Attention Module (ECCV2018)" Updat

Jongchan Park 1.7k Jan 01, 2023
FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification

FPGA & FreeNet Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification by Zhuo Zheng, Yanfei Zhong, Ailong M

Zhuo Zheng 92 Jan 03, 2023
Convert Python 3 code to CUDA code.

Py2CUDA Convert python code to CUDA. Usage To convert a python file say named py_file.py to CUDA, run python generate_cuda.py --file py_file.py --arch

Yuval Rosen 3 Jul 14, 2021
Deep Reinforcement Learning based Trading Agent for Bitcoin

Deep Trading Agent Deep Reinforcement Learning based Trading Agent for Bitcoin using DeepSense Network for Q function approximation. For complete deta

Kartikay Garg 669 Dec 29, 2022
Release of the ConditionalQA dataset

ConditionalQA Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers. Disclaimer This dataset

14 Oct 17, 2022
September-Assistant - Open-source Windows Voice Assistant

September - Windows Assistant September is an open-source Windows personal assis

The Nithin Balaji 9 Nov 22, 2022
[NeurIPS 2021] Introspective Distillation for Robust Question Answering

Introspective Distillation (IntroD) This repository is the Pytorch implementation of our paper "Introspective Distillation for Robust Question Answeri

Yulei Niu 13 Jul 26, 2022
City-seeds - A random generator of cultural characteristics intended to spark ideas and help draw threads

City Seeds This is a random generator of cultural characteristics intended to sp

Aydin O'Leary 2 Mar 12, 2022
Generative Adversarial Text-to-Image Synthesis

###Generative Adversarial Text-to-Image Synthesis Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee This is the

Scott Ellison Reed 883 Dec 31, 2022
Erpnext app for make employee salary on payroll entry based on one or more project with percentage for all project equal 100 %

Project Payroll this app for make payroll for employee based on projects like project on 30 % and project 2 70 % as account dimension it makes genral

Ibrahim Morghim 8 Jan 02, 2023
tree-math: mathematical operations for JAX pytrees

tree-math: mathematical operations for JAX pytrees tree-math makes it easy to implement numerical algorithms that work on JAX pytrees, such as iterati

Google 137 Dec 28, 2022