PyTorch implementation of "Efficient Neural Architecture Search via Parameters Sharing"

Overview

Efficient Neural Architecture Search (ENAS) in PyTorch

PyTorch implementation of Efficient Neural Architecture Search via Parameters Sharing.

ENAS_rnn

ENAS reduce the computational requirement (GPU-hours) of Neural Architecture Search (NAS) by 1000x via parameter sharing between models that are subgraphs within a large computational graph. SOTA on Penn Treebank language modeling.

**[Caveat] Use official code from the authors: link**

Prerequisites

  • Python 3.6+
  • PyTorch==0.3.1
  • tqdm, scipy, imageio, graphviz, tensorboardX

Usage

Install prerequisites with:

conda install graphviz
pip install -r requirements.txt

To train ENAS to discover a recurrent cell for RNN:

python main.py --network_type rnn --dataset ptb --controller_optim adam --controller_lr 0.00035 \
               --shared_optim sgd --shared_lr 20.0 --entropy_coeff 0.0001

python main.py --network_type rnn --dataset wikitext

To train ENAS to discover CNN architecture (in progress):

python main.py --network_type cnn --dataset cifar --controller_optim momentum --controller_lr_cosine=True \
               --controller_lr_max 0.05 --controller_lr_min 0.0001 --entropy_coeff 0.1

or you can use your own dataset by placing images like:

data
├── YOUR_TEXT_DATASET
│   ├── test.txt
│   ├── train.txt
│   └── valid.txt
├── YOUR_IMAGE_DATASET
│   ├── test
│   │   ├── xxx.jpg (name doesn't matter)
│   │   ├── yyy.jpg (name doesn't matter)
│   │   └── ...
│   ├── train
│   │   ├── xxx.jpg
│   │   └── ...
│   └── valid
│       ├── xxx.jpg
│       └── ...
├── image.py
└── text.py

To generate gif image of generated samples:

python generate_gif.py --model_name=ptb_2018-02-15_11-20-02 --output=sample.gif

More configurations can be found here.

Results

Efficient Neural Architecture Search (ENAS) is composed of two sets of learnable parameters, controller LSTM θ and the shared parameters ω. These two parameters are alternatively trained and only trained controller is used to derive novel architectures.

1. Discovering Recurrent Cells

rnn

Controller LSTM decide 1) what activation function to use and 2) which previous node to connect.

The RNN cell ENAS discovered for Penn Treebank and WikiText-2 dataset:

ptb wikitext

Best discovered ENAS cell for Penn Treebank at epoch 27:

ptb

You can see the details of training (e.g. reward, entropy, loss) with:

tensorboard --logdir=logs --port=6006

2. Discovering Convolutional Neural Networks

cnn

Controller LSTM samples 1) what computation operation to use and 2) which previous node to connect.

The CNN network ENAS discovered for CIFAR-10 dataset:

(in progress)

3. Designing Convolutional Cells

(in progress)

Reference

Author

Taehoon Kim / @carpedm20

Owner
Taehoon Kim
ex OpenAI
Taehoon Kim
[ICCV'21] Official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations

CrowdNav with Social-NCE This is an official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations by

VITA lab at EPFL 125 Dec 23, 2022
Art Project "Schrödinger's Game of Life"

Repo of the project "Team Creative Quantum AI: Schrödinger's Game of Life" Installation new conda env: conda create --name qcml python=3.8 conda activ

ℍ◮ℕℕ◭ℍ ℝ∈ᛔ∈ℝ 2 Sep 15, 2022
EGNN - Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch

EGNN - Pytorch Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch. May be eventually used for Alphafold2 replication. This

Phil Wang 259 Jan 04, 2023
This is an official pytorch implementation of Fast Fourier Convolution.

Fast Fourier Convolution (FFC) for Image Classification This is the official code of Fast Fourier Convolution for image classification on ImageNet. Ma

pkumi 199 Jan 03, 2023
An interactive DNN Model deployed on web that predicts the chance of heart failure for a patient with an accuracy of 98%

Heart Failure Predictor About A Web UI deployed Dense Neural Network Model Made using Tensorflow that predicts whether the patient is healthy or has c

Adit Ahmedabadi 0 Jan 09, 2022
High performance distributed framework for training deep learning recommendation models based on PyTorch.

PERSIA (Parallel rEcommendation tRaining System with hybrId Acceleration) is developed by AI 340 Dec 30, 2022

A Dynamic Residual Self-Attention Network for Lightweight Single Image Super-Resolution

DRSAN A Dynamic Residual Self-Attention Network for Lightweight Single Image Super-Resolution Karam Park, Jae Woong Soh, and Nam Ik Cho Environments U

4 May 10, 2022
FinRL­-Meta: A Universe for Data­-Driven Financial Reinforcement Learning. 🔥

FinRL-Meta: A Universe of Market Environments. FinRL-Meta is a universe of market environments for data-driven financial reinforcement learning. Users

AI4Finance Foundation 543 Jan 08, 2023
Multi Camera Calibration

Multi Camera Calibration 'modules/camera_calibration/app/camera_calibration.cpp' is for calculating extrinsic parameter of each individual cameras. 'm

7 Dec 01, 2022
Sign Language is detected in realtime using video sequences. Our approach involves MediaPipe Holistic for keypoints extraction and LSTM Model for prediction.

RealTime Sign Language Detection using Action Recognition Approach Real-Time Sign Language is commonly predicted using models whose architecture consi

Rishikesh S 15 Aug 20, 2022
Send text to girlfriend in the morning

Girlfriend Text Send text to girlfriend (or really anyone with a phone number) in the morning 1. Configure your settings in utils.py. phone_number = "

Paras Adhikary 199 Oct 25, 2022
Keras Image Embeddings using Contrastive Loss

Image to Embedding projection in vector space. Implementation in keras and tensorflow of batch all triplet loss for one-shot/few-shot learning.

Shravan Anand K 5 Mar 21, 2022
Implementation of Convolutional LSTM in PyTorch.

ConvLSTM_pytorch This file contains the implementation of Convolutional LSTM in PyTorch made by me and DavideA. We started from this implementation an

Andrea Palazzi 1.3k Dec 29, 2022
[CVPR 2022 Oral] Rethinking Minimal Sufficient Representation in Contrastive Learning

Rethinking Minimal Sufficient Representation in Contrastive Learning PyTorch implementation of Rethinking Minimal Sufficient Representation in Contras

36 Nov 23, 2022
PyTorch implementation of the REMIND method from our ECCV-2020 paper "REMIND Your Neural Network to Prevent Catastrophic Forgetting"

REMIND Your Neural Network to Prevent Catastrophic Forgetting This is a PyTorch implementation of the REMIND algorithm from our ECCV-2020 paper. An ar

Tyler Hayes 72 Nov 27, 2022
A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised Learning

LABES This is the code for EMNLP 2020 paper "A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised L

17 Sep 28, 2022
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
A tutorial on DataFrames.jl prepared for JuliaCon2021

JuliaCon2021 DataFrames.jl Tutorial This is a tutorial on DataFrames.jl prepared for JuliaCon2021. A video recording of the tutorial is available here

Bogumił Kamiński 106 Jan 09, 2023
ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation

ST++ This is the official PyTorch implementation of our paper: ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation. Lihe Ya

Lihe Yang 147 Jan 03, 2023
An AutoML Library made with Optuna and PyTorch Lightning

An AutoML Library made with Optuna and PyTorch Lightning Installation Recommended pip install -U gradsflow From source pip install git+https://github.

GradsFlow 294 Dec 17, 2022