Easy to use Audio Tagging in PyTorch

Overview

Audio Classification, Tagging & Sound Event Detection in PyTorch

Progress:

  • Fine-tune on audio classification
  • Fine-tune on audio tagging
  • Fine-tune on sound event detection
  • Add tagging metrics
  • Add Tutorial
  • Add Augmentation Notebook
  • Add more schedulers
  • Add FSDKaggle2019 dataset
  • Add MTT dataset
  • Add DESED

Model Zoo

AudioSet Pretrained Models
Model Task mAP
(%)
Sample Rate
(kHz)
Window Length Num Mels Fmax Weights
CNN14 Tagging 43.1 32 1024 64 14k download
CNN14_16k Tagging 43.8 16 512 64 8k download
CNN14_DecisionLevelMax SED 38.5 32 1024 64 14k download

Note: These models will be used as a pretrained model in the fine-tuning tasks below. Check out audioset-tagging-cnn, if you want to train on AudioSet dataset.

Fine-tuned Classification Models
Model Dataset Accuracy
(%)
Sample Rate
(kHz)
Weights
CNN14 ESC50 (Fold-5) 95.75 32 download
CNN14 FSDKaggle2018 (test) 93.56 32 download
CNN14 SpeechCommandsv1 (val/test) 96.60/96.77 32 download
Fine-tuned Tagging Models
Model Dataset mAP(%) AUC d-prime Sample Rate
(kHz)
Config Weights
CNN14 FSDKaggle2019 - - - 32 - -
Fine-tuned SED Models
Model Dataset F1 Sample Rate
(kHz)
Config Weights
CNN14_DecisionLevelMax DESED - 32 - -

Supported Datasets

Dataset Task Classes Train Val Test Audio Length Audio Spec Size
ESC-50 Classification 50 2,000 5 folds - 5s 44.1kHz, mono 600MB
UrbanSound8k Classification 10 8,732 10 folds - <=4s Vary 5.6GB
FSDKaggle2018 Classification 41 9,473 - 1,600 300ms~30s 44.1kHz, mono 4.6GB
SpeechCommandsv1 Classification 30 51,088 6,798 6,835 <=1s 16kHz, mono 1.4GB
SpeechCommandsv2 Classification 35 84,843 9,981 11,005 <=1s 16kHz, mono 2.3GB
FSDKaggle2019* Tagging 80 4,970+19,815 - 4,481 300ms~30s 44.1kHz, mono 24GB
MTT* Tagging 50 19,000 - - - - 3GB
DESED* SED 10 - - - 10 - -

Notes: * datasets are not available yet. Classification dataset are treated as multi-class/single-label classification and tagging and sed datasets are treated as multi-label classification.

Dataset Structure (click to expand)

Download the dataset and prepare it into the following structure.

datasets
|__ ESC50
    |__ audio

|__ Urbansound8k
    |__ audio

|__ FSDKaggle2018
    |__ audio_train
    |__ audio_test
    |__ FSDKaggle2018.meta
        |__ train_post_competition.csv
        |__ test_post_competition_scoring_clips.csv

|__ SpeechCommandsv1/v2
    |__ bed
    |__ bird
    |__ ...
    |__ testing_list.txt
    |__ validation_list.txt


Augmentations (click to expand)

Currently, the following augmentations are supported. More will be added in the future. You can test the effects of augmentations with this notebook

WaveForm Augmentations:

  • MixUp
  • Background Noise
  • Gaussian Noise
  • Fade In/Out
  • Volume
  • CutMix

Spectrogram Augmentations:

  • Time Masking
  • Frequency Masking
  • Filter Augmentation

Usage

Requirements (click to expand)
  • python >= 3.6
  • pytorch >= 1.8.1
  • torchaudio >= 0.8.1

Other requirements can be installed with pip install -r requirements.txt.


Configuration (click to expand)
  • Create a configuration file in configs. Sample configuration for ESC50 dataset can be found here.
  • Copy the contents of this and then edit the fields you think if it is needed.
  • This configuration file is needed for all of training, evaluation and prediction scripts.

Training (click to expand)

To train with a single GPU:

$ python tools/train.py --cfg configs/CONFIG_FILE_NAME.yaml

To train with multiple gpus, set DDP field in config file to true and run as follows:

$ python -m torch.distributed.launch --nproc_per_node=2 --use_env tools/train.py --cfg configs/CONFIG_FILE_NAME.yaml

Evaluation (click to expand)

Make sure to set MODEL_PATH of the configuration file to your trained model directory.

$ python tools/val.py --cfg configs/CONFIG_FILE.yaml

Audio Classification/Tagging Inference
  • Set MODEL_PATH of the configuration file to your model's trained weights.
  • Change the dataset name in DATASET >> NAME as your trained model's dataset.
  • Set the testing audio file path in TEST >> FILE.
  • Run the following command.
$ python tools/infer.py --cfg configs/CONFIG_FILE.yaml

## for example
$ python tools/infer.py --cfg configs/audioset.yaml

You will get an output similar to this:

Class                     Confidence
----------------------  ------------
Speech                     0.897762
Telephone bell ringing     0.752206
Telephone                  0.219329
Inside, small room         0.20761
Music                      0.0770325

Sound Event Detection Inference
  • Set MODEL_PATH of the configuration file to your model's trained weights.
  • Change the dataset name in DATASET >> NAME as your trained model's dataset.
  • Set the testing audio file path in TEST >> FILE.
  • Run the following command.
$ python tools/sed_infer.py --cfg configs/CONFIG_FILE.yaml

## for example
$ python tools/sed_infer.py --cfg configs/audioset_sed.yaml

You will get an output similar to this:

Class                     Start    End
----------------------  -------  -----
Speech                      2.2    7
Telephone bell ringing      0      2.5

The following plot will also be shown, if you set PLOT to true:

sed_result


References (click to expand)

Citations (click to expand)
@misc{kong2020panns,
      title={PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition}, 
      author={Qiuqiang Kong and Yin Cao and Turab Iqbal and Yuxuan Wang and Wenwu Wang and Mark D. Plumbley},
      year={2020},
      eprint={1912.10211},
      archivePrefix={arXiv},
      primaryClass={cs.SD}
}

@misc{gong2021ast,
      title={AST: Audio Spectrogram Transformer}, 
      author={Yuan Gong and Yu-An Chung and James Glass},
      year={2021},
      eprint={2104.01778},
      archivePrefix={arXiv},
      primaryClass={cs.SD}
}

@misc{nam2021heavily,
      title={Heavily Augmented Sound Event Detection utilizing Weak Predictions}, 
      author={Hyeonuk Nam and Byeong-Yun Ko and Gyeong-Tae Lee and Seong-Hu Kim and Won-Ho Jung and Sang-Min Choi and Yong-Hwa Park},
      year={2021},
      eprint={2107.03649},
      archivePrefix={arXiv},
      primaryClass={eess.AS}
}
You might also like...
TorchMetrics is a collection of 25+ PyTorch metrics implementations and an easy-to-use API to create custom metrics. TorchFlare is a simple, beginner-friendly, and easy-to-use PyTorch Framework train your models effortlessly.
TorchFlare is a simple, beginner-friendly, and easy-to-use PyTorch Framework train your models effortlessly.

TorchFlare TorchFlare is a simple, beginner-friendly and an easy-to-use PyTorch Framework train your models without much effort. It provides an almost

A more easy-to-use implementation of KPConv based on PyTorch.

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectrum sensing.

Deep-Learning-based-Spectrum-Sensing Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectru

Fast image augmentation library and easy to use wrapper around other libraries. Documentation:  https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125
Fast image augmentation library and easy to use wrapper around other libraries. Documentation: https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

Fast, flexible and easy to use probabilistic modelling in Python.
Fast, flexible and easy to use probabilistic modelling in Python.

Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic

High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

A fast and easy to use, moddable, Python based Minecraft server!
A fast and easy to use, moddable, Python based Minecraft server!

PyMine PyMine - The fastest, easiest to use, Python-based Minecraft Server! Features Note: This list is not always up to date, and doesn't contain all

Releases(v0.2.0)
  • v0.2.0(Aug 17, 2021)

    This release includes the following:

    • Fine-tuned on ESC50, FSDKaggle2018, SpeechCommandsv1
    • Add waveform augmentations
    • Add spectrogram augmentations
    • Add augmentation testing notebook
    • Add tagging metrics
    Source code(tar.gz)
    Source code(zip)
  • v0.1.0(Aug 13, 2021)

Owner
sithu3
AI Developer
sithu3
TransPrompt - Towards an Automatic Transferable Prompting Framework for Few-shot Text Classification

TransPrompt This code is implement for our EMNLP 2021's paper 《TransPrompt:Towards an Automatic Transferable Prompting Framework for Few-shot Text Cla

WangJianing 23 Dec 21, 2022
We will release the code of "ConTNet: Why not use convolution and transformer at the same time?" in this repo

ConTNet Introduction ConTNet (Convlution-Tranformer Network) is proposed mainly in response to the following two issues: (1) ConvNets lack a large rec

93 Nov 08, 2022
ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

Katherine Crowson 53 Dec 29, 2022
3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces (ICCV 2021)

3DIAS_Pytorch This repository contains the official code to reproduce the results from the paper: 3DIAS: 3D Shape Reconstruction with Implicit Algebra

Mohsen Yavartanoo 21 Dec 12, 2022
Optimizing synthesizer parameters using gradient approximation

Optimizing synthesizer parameters using gradient approximation NASH 2021 Hackathon! These are some experiments I conducted during NASH 2021, the Neura

Jordie Shier 10 Feb 10, 2022
The source code for 'Noisy-Labeled NER with Confidence Estimation' accepted by NAACL 2021

Kun Liu*, Yao Fu*, Chuanqi Tan, Mosha Chen, Ningyu Zhang, Songfang Huang, Sheng Gao. Noisy-Labeled NER with Confidence Estimation. NAACL 2021. [arxiv]

30 Nov 12, 2022
The implementation of FOLD-R++ algorithm

FOLD-R-PP The implementation of FOLD-R++ algorithm. The target of FOLD-R++ algorithm is to learn an answer set program for a classification task. Inst

13 Dec 23, 2022
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
Deep Learning Models for Causal Inference

Extensive tutorials for learning how to build deep learning models for causal inference using selection on observables in Tensorflow 2.

Bernard J Koch 151 Dec 31, 2022
Harmonic Memory Networks for Graph Completion

HMemNetworks Code and documentation for Harmonic Memory Networks, a series of models for compositionally assembling representations of graph elements

mlalisse 0 Oct 27, 2021
Interpretable-contrastive-word-mover-s-embedding

Interpretable-contrastive-word-mover-s-embedding Paper Datasets Here is a Dropbox link to the datasets used in the paper: https://www.dropbox.com/sh/n

0 Nov 02, 2021
PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).

PFENet This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEE

DV Lab 230 Dec 31, 2022
Pytorch implementation for "Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets" (ECCV 2020 Spotlight)

Distribution-Balanced Loss [Paper] The implementation of our paper Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets (

Tong WU 304 Dec 22, 2022
Towards Implicit Text-Guided 3D Shape Generation (CVPR2022)

Towards Implicit Text-Guided 3D Shape Generation Towards Implicit Text-Guided 3D Shape Generation (CVPR2022) Code for the paper [Towards Implicit Text

55 Dec 16, 2022
Provide baselines and evaluation metrics of the task: traffic flow prediction

Note: This repo is adpoted from https://github.com/UNIMIBInside/Smart-Mobility-Prediction. Due to technical reasons, I did not fork their code. Introd

Zhangzhi Peng 11 Nov 02, 2022
Official Repsoitory for "Activate or Not: Learning Customized Activation." [CVPR 2021]

CVPR 2021 | Activate or Not: Learning Customized Activation. This repository contains the official Pytorch implementation of the paper Activate or Not

184 Dec 27, 2022
PyTorch Implementation of Temporal Output Discrepancy for Active Learning, ICCV 2021

Temporal Output Discrepancy for Active Learning PyTorch implementation of Semi-Supervised Active Learning with Temporal Output Discrepancy, ICCV 2021.

Siyu Huang 33 Dec 06, 2022
Current state of supervised and unsupervised depth completion methods

Awesome Depth Completion Table of Contents About Sparse-to-Dense Depth Completion Current State of Depth Completion Unsupervised VOID Benchmark Superv

224 Dec 28, 2022
MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition

MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition Paper: MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition accepted fo

64 Dec 18, 2022
Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21)

NeuralGIF Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21) We present Neural Generalized Implicit F

Garvita Tiwari 104 Nov 18, 2022