Easy to use Audio Tagging in PyTorch

Overview

Audio Classification, Tagging & Sound Event Detection in PyTorch

Progress:

  • Fine-tune on audio classification
  • Fine-tune on audio tagging
  • Fine-tune on sound event detection
  • Add tagging metrics
  • Add Tutorial
  • Add Augmentation Notebook
  • Add more schedulers
  • Add FSDKaggle2019 dataset
  • Add MTT dataset
  • Add DESED

Model Zoo

AudioSet Pretrained Models
Model Task mAP
(%)
Sample Rate
(kHz)
Window Length Num Mels Fmax Weights
CNN14 Tagging 43.1 32 1024 64 14k download
CNN14_16k Tagging 43.8 16 512 64 8k download
CNN14_DecisionLevelMax SED 38.5 32 1024 64 14k download

Note: These models will be used as a pretrained model in the fine-tuning tasks below. Check out audioset-tagging-cnn, if you want to train on AudioSet dataset.

Fine-tuned Classification Models
Model Dataset Accuracy
(%)
Sample Rate
(kHz)
Weights
CNN14 ESC50 (Fold-5) 95.75 32 download
CNN14 FSDKaggle2018 (test) 93.56 32 download
CNN14 SpeechCommandsv1 (val/test) 96.60/96.77 32 download
Fine-tuned Tagging Models
Model Dataset mAP(%) AUC d-prime Sample Rate
(kHz)
Config Weights
CNN14 FSDKaggle2019 - - - 32 - -
Fine-tuned SED Models
Model Dataset F1 Sample Rate
(kHz)
Config Weights
CNN14_DecisionLevelMax DESED - 32 - -

Supported Datasets

Dataset Task Classes Train Val Test Audio Length Audio Spec Size
ESC-50 Classification 50 2,000 5 folds - 5s 44.1kHz, mono 600MB
UrbanSound8k Classification 10 8,732 10 folds - <=4s Vary 5.6GB
FSDKaggle2018 Classification 41 9,473 - 1,600 300ms~30s 44.1kHz, mono 4.6GB
SpeechCommandsv1 Classification 30 51,088 6,798 6,835 <=1s 16kHz, mono 1.4GB
SpeechCommandsv2 Classification 35 84,843 9,981 11,005 <=1s 16kHz, mono 2.3GB
FSDKaggle2019* Tagging 80 4,970+19,815 - 4,481 300ms~30s 44.1kHz, mono 24GB
MTT* Tagging 50 19,000 - - - - 3GB
DESED* SED 10 - - - 10 - -

Notes: * datasets are not available yet. Classification dataset are treated as multi-class/single-label classification and tagging and sed datasets are treated as multi-label classification.

Dataset Structure (click to expand)

Download the dataset and prepare it into the following structure.

datasets
|__ ESC50
    |__ audio

|__ Urbansound8k
    |__ audio

|__ FSDKaggle2018
    |__ audio_train
    |__ audio_test
    |__ FSDKaggle2018.meta
        |__ train_post_competition.csv
        |__ test_post_competition_scoring_clips.csv

|__ SpeechCommandsv1/v2
    |__ bed
    |__ bird
    |__ ...
    |__ testing_list.txt
    |__ validation_list.txt


Augmentations (click to expand)

Currently, the following augmentations are supported. More will be added in the future. You can test the effects of augmentations with this notebook

WaveForm Augmentations:

  • MixUp
  • Background Noise
  • Gaussian Noise
  • Fade In/Out
  • Volume
  • CutMix

Spectrogram Augmentations:

  • Time Masking
  • Frequency Masking
  • Filter Augmentation

Usage

Requirements (click to expand)
  • python >= 3.6
  • pytorch >= 1.8.1
  • torchaudio >= 0.8.1

Other requirements can be installed with pip install -r requirements.txt.


Configuration (click to expand)
  • Create a configuration file in configs. Sample configuration for ESC50 dataset can be found here.
  • Copy the contents of this and then edit the fields you think if it is needed.
  • This configuration file is needed for all of training, evaluation and prediction scripts.

Training (click to expand)

To train with a single GPU:

$ python tools/train.py --cfg configs/CONFIG_FILE_NAME.yaml

To train with multiple gpus, set DDP field in config file to true and run as follows:

$ python -m torch.distributed.launch --nproc_per_node=2 --use_env tools/train.py --cfg configs/CONFIG_FILE_NAME.yaml

Evaluation (click to expand)

Make sure to set MODEL_PATH of the configuration file to your trained model directory.

$ python tools/val.py --cfg configs/CONFIG_FILE.yaml

Audio Classification/Tagging Inference
  • Set MODEL_PATH of the configuration file to your model's trained weights.
  • Change the dataset name in DATASET >> NAME as your trained model's dataset.
  • Set the testing audio file path in TEST >> FILE.
  • Run the following command.
$ python tools/infer.py --cfg configs/CONFIG_FILE.yaml

## for example
$ python tools/infer.py --cfg configs/audioset.yaml

You will get an output similar to this:

Class                     Confidence
----------------------  ------------
Speech                     0.897762
Telephone bell ringing     0.752206
Telephone                  0.219329
Inside, small room         0.20761
Music                      0.0770325

Sound Event Detection Inference
  • Set MODEL_PATH of the configuration file to your model's trained weights.
  • Change the dataset name in DATASET >> NAME as your trained model's dataset.
  • Set the testing audio file path in TEST >> FILE.
  • Run the following command.
$ python tools/sed_infer.py --cfg configs/CONFIG_FILE.yaml

## for example
$ python tools/sed_infer.py --cfg configs/audioset_sed.yaml

You will get an output similar to this:

Class                     Start    End
----------------------  -------  -----
Speech                      2.2    7
Telephone bell ringing      0      2.5

The following plot will also be shown, if you set PLOT to true:

sed_result


References (click to expand)

Citations (click to expand)
@misc{kong2020panns,
      title={PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition}, 
      author={Qiuqiang Kong and Yin Cao and Turab Iqbal and Yuxuan Wang and Wenwu Wang and Mark D. Plumbley},
      year={2020},
      eprint={1912.10211},
      archivePrefix={arXiv},
      primaryClass={cs.SD}
}

@misc{gong2021ast,
      title={AST: Audio Spectrogram Transformer}, 
      author={Yuan Gong and Yu-An Chung and James Glass},
      year={2021},
      eprint={2104.01778},
      archivePrefix={arXiv},
      primaryClass={cs.SD}
}

@misc{nam2021heavily,
      title={Heavily Augmented Sound Event Detection utilizing Weak Predictions}, 
      author={Hyeonuk Nam and Byeong-Yun Ko and Gyeong-Tae Lee and Seong-Hu Kim and Won-Ho Jung and Sang-Min Choi and Yong-Hwa Park},
      year={2021},
      eprint={2107.03649},
      archivePrefix={arXiv},
      primaryClass={eess.AS}
}
You might also like...
TorchMetrics is a collection of 25+ PyTorch metrics implementations and an easy-to-use API to create custom metrics. TorchFlare is a simple, beginner-friendly, and easy-to-use PyTorch Framework train your models effortlessly.
TorchFlare is a simple, beginner-friendly, and easy-to-use PyTorch Framework train your models effortlessly.

TorchFlare TorchFlare is a simple, beginner-friendly and an easy-to-use PyTorch Framework train your models without much effort. It provides an almost

A more easy-to-use implementation of KPConv based on PyTorch.

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectrum sensing.

Deep-Learning-based-Spectrum-Sensing Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectru

Fast image augmentation library and easy to use wrapper around other libraries. Documentation:  https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125
Fast image augmentation library and easy to use wrapper around other libraries. Documentation: https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

Fast, flexible and easy to use probabilistic modelling in Python.
Fast, flexible and easy to use probabilistic modelling in Python.

Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic

High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

A fast and easy to use, moddable, Python based Minecraft server!
A fast and easy to use, moddable, Python based Minecraft server!

PyMine PyMine - The fastest, easiest to use, Python-based Minecraft Server! Features Note: This list is not always up to date, and doesn't contain all

Releases(v0.2.0)
  • v0.2.0(Aug 17, 2021)

    This release includes the following:

    • Fine-tuned on ESC50, FSDKaggle2018, SpeechCommandsv1
    • Add waveform augmentations
    • Add spectrogram augmentations
    • Add augmentation testing notebook
    • Add tagging metrics
    Source code(tar.gz)
    Source code(zip)
  • v0.1.0(Aug 13, 2021)

Owner
sithu3
AI Developer
sithu3
Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning

Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning This repository provides an implementation of the paper Beta S

Yongchan Kwon 28 Nov 10, 2022
Official PyTorch implementation of "VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization" (CVPR 2021)

VITON-HD — Official PyTorch Implementation VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization Seunghwan Choi*1, Sunghyun Pa

Seunghwan Choi 250 Jan 06, 2023
Implementation detail for paper "Multi-level colonoscopy malignant tissue detection with adversarial CAC-UNet"

Multi-level-colonoscopy-malignant-tissue-detection-with-adversarial-CAC-UNet Implementation detail for our paper "Multi-level colonoscopy malignant ti

CVSM Group - email: <a href=[email protected]"> 84 Nov 22, 2022
Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours

tsp-streamlit Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours.

4 Nov 05, 2022
Real-Time High-Resolution Background Matting

Real-Time High-Resolution Background Matting Official repository for the paper Real-Time High-Resolution Background Matting. Our model requires captur

Peter Lin 6.1k Jan 03, 2023
Official implementation of paper "Query2Label: A Simple Transformer Way to Multi-Label Classification".

Introdunction This is the official implementation of the paper "Query2Label: A Simple Transformer Way to Multi-Label Classification". Abstract This pa

Shilong Liu 274 Dec 28, 2022
Self-Supervised depth kalilia

Self-Supervised depth kalilia

24 Oct 15, 2022
Quantum-enhanced transformer neural network

Example of a Quantum-enhanced transformer neural network Get the code: git clone https://github.com/rdisipio/qtransformer.git cd qtransformer Create

Riccardo Di Sipio 61 Nov 08, 2022
An open source object detection toolbox based on PyTorch

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

Bo Chen 24 Dec 28, 2022
SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab

CORNELLSASLAB SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab Instructions: This python code can be used to convert SAS out

2 Jan 26, 2022
Multiview 3D object detection on MultiviewC dataset through moft3d.

Multiview Orthographic Feature Transformation for 3D Object Detection Multiview 3D object detection on MultiviewC dataset through moft3d. Introduction

Jiahao Ma 20 Dec 21, 2022
RCT-ART is an NLP pipeline built with spaCy for converting clinical trial result sentences into tables through jointly extracting intervention, outcome and outcome measure entities and their relations.

Randomised controlled trial abstract result tabulator RCT-ART is an NLP pipeline built with spaCy for converting clinical trial result sentences into

2 Sep 16, 2022
Deep Learning for Computer Vision final project

Deep Learning for Computer Vision final project

grassking100 1 Nov 30, 2021
Official PyTorch code for "BAM: Bottleneck Attention Module (BMVC2018)" and "CBAM: Convolutional Block Attention Module (ECCV2018)"

BAM and CBAM Official PyTorch code for "BAM: Bottleneck Attention Module (BMVC2018)" and "CBAM: Convolutional Block Attention Module (ECCV2018)" Updat

Jongchan Park 1.7k Jan 01, 2023
Code of TIP2021 Paper《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet and Pytorch versions.

SFace Code of TIP2021 Paper 《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet, PyTorch and Jittor versi

Zhong Yaoyao 47 Nov 25, 2022
IJCAI2020 & IJCV 2020 :city_sunrise: Unsupervised Scene Adaptation with Memory Regularization in vivo

Seg_Uncertainty In this repo, we provide the code for the two papers, i.e., MRNet:Unsupervised Scene Adaptation with Memory Regularization in vivo, IJ

Zhedong Zheng 348 Jan 05, 2023
CVPR2020 Counterfactual Samples Synthesizing for Robust VQA

CVPR2020 Counterfactual Samples Synthesizing for Robust VQA This repo contains code for our paper "Counterfactual Samples Synthesizing for Robust Visu

72 Dec 22, 2022
A Partition Filter Network for Joint Entity and Relation Extraction EMNLP 2021

EMNLP 2021 - A Partition Filter Network for Joint Entity and Relation Extraction

zhy 127 Jan 04, 2023
Collect super-resolution related papers, data, repositories

Collect super-resolution related papers, data, repositories

WangChaofeng 1.7k Jan 03, 2023
Predicting Tweet Sentiment Maching Learning and streamlit

Predicting-Tweet-Sentiment-Maching-Learning-and-streamlit (I prefere using Visual Studio Code ) Open the folder in VS Code Run the first cell in requi

1 Nov 20, 2021