ICML 21 - Voice2Series: Reprogramming Acoustic Models for Time Series Classification

Overview

Voice2Series-Reprogramming

Voice2Series: Reprogramming Acoustic Models for Time Series Classification

  • International Conference on Machine Learning (ICML), 2021 | Paper | Colab Demo

Environment

Tensorflow 2.2 (CUDA=10.0) and Kapre 0.2.0.

  • Noted: Echo to many interests from the community, we will also provide Pytorch V2S layers and frameworks around this September, incoperating the new torch audio layers. Feel free to email the authors for further collaboration.

  • option 1 (from yml)

conda env create -f V2S.yml
  • option 2 (from clean python 3.6)
pip install tensorflow-gpu==2.1.0
pip install kapre==0.2.0
pip install h5py==2.10.0

Training

  • This is tengible Version. Please also check the paper for actual validation details. Many Thanks!
python v2s_main.py --dataset 0 --eps 100 --mapping 3
  • Result
seg idx: 0 --> start: 0, end: 500
seg idx: 1 --> start: 5000, end: 5500
seg idx: 2 --> start: 10000, end: 10500
Tensor("AddV2_2:0", shape=(None, 16000, 1), dtype=float32)
--- Preparing Masking Matrix
Model: "model_1"
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input_1 (InputLayer)            [(None, 500, 1)]     0                                            
__________________________________________________________________________________________________
zero_padding1d (ZeroPadding1D)  (None, 16000, 1)     0           input_1[0][0]                    
__________________________________________________________________________________________________
tf_op_layer_AddV2 (TensorFlowOp [(None, 16000, 1)]   0           zero_padding1d[0][0]             
__________________________________________________________________________________________________
zero_padding1d_1 (ZeroPadding1D (None, 16000, 1)     0           input_1[0][0]                    
__________________________________________________________________________________________________
tf_op_layer_AddV2_1 (TensorFlow [(None, 16000, 1)]   0           tf_op_layer_AddV2[0][0]          
                                                                 zero_padding1d_1[0][0]           
__________________________________________________________________________________________________
zero_padding1d_2 (ZeroPadding1D (None, 16000, 1)     0           input_1[0][0]                    
__________________________________________________________________________________________________
tf_op_layer_AddV2_2 (TensorFlow [(None, 16000, 1)]   0           tf_op_layer_AddV2_1[0][0]        
                                                                 zero_padding1d_2[0][0]           
__________________________________________________________________________________________________
art_layer (ARTLayer)            (None, 16000, 1)     16000       tf_op_layer_AddV2_2[0][0]        
__________________________________________________________________________________________________
reshape_1 (Reshape)             (None, 16000)        0           art_layer[0][0]                  
__________________________________________________________________________________________________
model (Model)                   (None, 36)           1292911     reshape_1[0][0]                  
__________________________________________________________________________________________________
tf_op_layer_MatMul (TensorFlowO [(None, 6)]          0           model[1][0]                      
__________________________________________________________________________________________________
tf_op_layer_Shape (TensorFlowOp [(2,)]               0           tf_op_layer_MatMul[0][0]         
__________________________________________________________________________________________________
tf_op_layer_strided_slice (Tens [()]                 0           tf_op_layer_Shape[0][0]          
__________________________________________________________________________________________________
tf_op_layer_Reshape_2/shape (Te [(3,)]               0           tf_op_layer_strided_slice[0][0]  
__________________________________________________________________________________________________
tf_op_layer_Reshape_2 (TensorFl [(None, 2, 3)]       0           tf_op_layer_MatMul[0][0]         
                                                                 tf_op_layer_Reshape_2/shape[0][0]
__________________________________________________________________________________________________
tf_op_layer_Mean (TensorFlowOpL [(None, 2)]          0           tf_op_layer_Reshape_2[0][0]      
==================================================================================================
Total params: 1,308,911
Trainable params: 217,225
Non-trainable params: 1,091,686
__________________________________________________________________________________________________
Epoch 1/100
2021-07-19 01:43:32.690913: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10
2021-07-19 01:43:32.919343: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
113/113 [==============================] - 6s 50ms/step - loss: 0.0811 - accuracy: 1.0000 - val_loss: 1.5589e-04 - val_accuracy: 1.0000
Epoch 2/100
113/113 [==============================] - 5s 41ms/step - loss: 5.0098e-05 - accuracy: 1.0000 - val_loss: 1.0906e-05 - val_accuracy: 1.0000

Class Activation Mapping

python cam_v2s.py --dataset 5 --weight wNo5_map6-88-0.7662.h5 --mapping 6 --layer conv2d_1

Reference

  • Voice2Series: Reprogramming Acoustic Models for Time Series Classification
@InProceedings{pmlr-v139-yang21j,
  title = 	 {Voice2Series: Reprogramming Acoustic Models for Time Series Classification},
  author =       {Yang, Chao-Han Huck and Tsai, Yun-Yun and Chen, Pin-Yu},
  booktitle = 	 {Proceedings of the 38th International Conference on Machine Learning},
  pages = 	 {11808--11819},
  year = 	 {2021},
  volume = 	 {139},
  series = 	 {Proceedings of Machine Learning Research},
  month = 	 {18--24 Jul},
  publisher =    {PMLR},
}
Owner
Speech, Reinforcement Learning, and Causal Inference.
Visyerres sgdf woob - Modules Woob pour l'intranet et autres sites Scouts et Guides de France

Vis'Yerres SGDF - Modules Woob Vous avez le sentiment que l'intranet des Scouts

Thomas Touhey (pas un pseudonyme) 3 Dec 24, 2022
The official codes for the ICCV2021 presentation "Uniformity in Heterogeneity: Diving Deep into Count Interval Partition for Crowd Counting"

UEPNet (ICCV2021 Poster Presentation) This repository contains codes for the official implementation in PyTorch of UEPNet as described in Uniformity i

Tencent YouTu Research 15 Dec 14, 2022
Lab Materials for MIT 6.S191: Introduction to Deep Learning

This repository contains all of the code and software labs for MIT 6.S191: Introduction to Deep Learning! All lecture slides and videos are available

Alexander Amini 5.6k Dec 26, 2022
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da

MIT CSAIL Computer Vision 4.5k Jan 08, 2023
Code repository for Self-supervised Structure-sensitive Learning, CVPR'17

Self-supervised Structure-sensitive Learning (SSL) Ke Gong, Xiaodan Liang, Xiaohui Shen, Liang Lin, "Look into Person: Self-supervised Structure-sensi

Clay Gong 219 Dec 29, 2022
DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS) data.

DeepConsensus DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS)

Google 149 Dec 19, 2022
SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch.

The SpeechBrain Toolkit SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch. The goal is to create a single, flexible, and us

SpeechBrain 5.1k Jan 02, 2023
PyTorch Implementation of SSTNs for hyperspectral image classifications from the IEEE T-GRS paper "Spectral-Spatial Transformer Network for Hyperspectral Image Classification: A FAS Framework."

PyTorch Implementation of SSTN for Hyperspectral Image Classification Paper links: SSTN published on IEEE T-GRS. Also, you can directly find the imple

Zilong Zhong 54 Dec 19, 2022
Live Hand Tracking Using Python

Live-Hand-Tracking-Using-Python Project Description: In this project, we will be

Hassan Shahzad 2 Jan 06, 2022
Implementation of "Fast and Flexible Temporal Point Processes with Triangular Maps" (Oral @ NeurIPS 2020)

Fast and Flexible Temporal Point Processes with Triangular Maps This repository includes a reference implementation of the algorithms described in "Fa

Oleksandr Shchur 20 Dec 02, 2022
Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022.

Jadena Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022. arXiv

Qing Guo 13 Nov 29, 2022
Swapping face using Face Mesh with TensorFlow Lite

Swapping face using Face Mesh with TensorFlow Lite

iwatake 17 Apr 26, 2022
Spherical Confidence Learning for Face Recognition, accepted to CVPR2021.

Sphere Confidence Face (SCF) This repository contains the PyTorch implementation of Sphere Confidence Face (SCF) proposed in the CVPR2021 paper: Shen

Maths 70 Dec 09, 2022
ParmeSan: Sanitizer-guided Greybox Fuzzing

ParmeSan: Sanitizer-guided Greybox Fuzzing ParmeSan is a sanitizer-guided greybox fuzzer based on Angora. Published Work USENIX Security 2020: ParmeSa

VUSec 158 Dec 31, 2022
Material related to the Principles of Cloud Computing course.

CloudComputingCourse Material related to the Principles of Cloud Computing course. This repository comprises material that I use to teach my Principle

Aniruddha Gokhale 15 Dec 02, 2022
Scalable Multi-Agent Reinforcement Learning

Scalable Multi-Agent Reinforcement Learning 1. Featured algorithms: Value Function Factorization with Variable Agent Sub-Teams (VAST) [1] 2. Implement

3 Aug 02, 2022
Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm

DeCLIP Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm. Our paper is available in arxiv Updates ** Ou

Sense-GVT 470 Dec 30, 2022
Official code for "EagerMOT: 3D Multi-Object Tracking via Sensor Fusion" [ICRA 2021]

EagerMOT: 3D Multi-Object Tracking via Sensor Fusion Read our ICRA 2021 paper here. Check out the 3 minute video for the quick intro or the full prese

Aleksandr Kim 276 Dec 30, 2022
Shitty gaze mouse controller

demo.mp4 shitty_gaze_mouse_cotroller install tensofflow, cv2 run the main.py and as it starts it will collect data so first raise your left eyebrow(bo

16 Aug 30, 2022
[SIGGRAPH'22] StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets

[Project] [PDF] This repository contains code for our SIGGRAPH'22 paper "StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets" by Axel Sauer, Katja

742 Jan 04, 2023