public repo for ESTER dataset and modeling (EMNLP'21)

Related tags

Deep LearningESTER
Overview

Project / Paper Introduction

This is the project repo for our EMNLP'21 paper: https://arxiv.org/abs/2104.08350

Here, we provide brief descriptions of the final data and detailed instructions to reproduce results in our paper. For more details, please refer to the paper.

Data

Final data used for the experiments are saved in ./data/ folder with train/dev/test splits. Most data fields are straightforward. Just a few notes,

  • question_event: this field is not provided by annotators nor used for our experiments. We simply use some heuristic rules based on POS tags to extract possible events in the questions. Users are encourages to try alternative tools such semantic role labeling.
  • original_events and indices are the annotator-provided event triggers plus their indices in the context.
  • answer_texts and answer_indices (in train and dev) are the annotator-provided answers plus their indices in the context.

Please Note: the evaluation script below (II) only works for the dev set. Please refer to Section III for submission to our leaderboard: https://eventqa.github.io

Models

I. Install packages.

We list the packages in our environment in env.yml file for your reference. Below are a few key packages.

  • python=3.8.5
  • pytorch=1.6.0
  • transformers=3.1.0
  • cudatoolkit=10.1.243
  • apex=0.1

To install apex, you can either follow official instruction: https://github.com/NVIDIA/apex or conda: https://anaconda.org/conda-forge/nvidia-apex

II. Replicate results in our paper.

1. Download trained models.

For reproduction purpose, we release all trained models.

  • Download link: https://drive.google.com/drive/folders/1bTCb4gBUCaNrw2chleD4RD9JP1_DOWjj?usp=sharing.
  • We only provide models with the best "hyper-parameters", and each comes with three random seeds: 5, 7, 23.
  • Make several directories to save models ./output/, ./output/facebook/ and ./output/allenai/.
  • For BART models, download them into ./output/facebook/.
  • For UnifiedQA models, download them into ./output/allenai/.
  • All other models can be saved in ./output/ directly. These ensure evaluation scripts run properly below.

2. Zero-shot performances in Table 3.

Run bash ./code/eval_zero_shot.sh. Model options are provided in the script.

3. Generative QA Fine-tuning performances in Table 3.

Run bash ./code/eval_ans_gen.sh. Make sure the following arguments are set correctly in the script.

  • Model Options provided in the script
  • Set suffix=""
  • Set lrs and batch according to model options. You can find these numbers in Appendix G of the paper.

4. Figure 6: UnifiedQA-large model trained with sub-samples.

Run bash ./code/eval_ans_gen.sh`. Make sure the following arguments are set correctly in the script.

  • model="allenai/unifiedqa-t5-large"
  • suffix={"_500" | "_1000" | "_2000" | "_3000" | "_4000"}
  • Set lrs and batch accordingly. You can find these information in the folder name containing the trained model objects.

5. Table 4: 500 original annotations v.s. completed

  • bash ./code/eval_ans_gen.sh with model="allenai/unifiedqa-t5-large and suffix="_500original
  • bash ./code/eval_ans_gen.sh with model="allenai/unifiedqa-t5-large and suffix="_500completed
  • Set lrs and batch accordingly again.

6. Extractive QA Fine-tuning performances in Table 3.

Simply run bash ./code/eval_span_pred.sh as it is.

7. Figure 8: Extractive QA Fine-tuning performances by changing positive weights.

  • Run bash ./code/eval_span_pred.sh.
  • Set pw, lrs and batch according to model folder names again.

III. Submission to ESTER Leaderboard

  • Set model_dir to your target models
  • Run leaderboard.sh, which outputs pred_dev.json and pred_test.json under ./output
  • If you write your own code to output predictions, make sure they follow our original sample order.
  • Email pred_test.json to us following in the format specified here: https://eventqa.github.io Sample outputs (using one of our UnifiedQA-large models) are provided under ./output

IV. Model Training

We also provide the model training scripts below.

1. Generative QA: Fine-tuning in Table 3.

  • Run bash ./code/run_ans_generation.sh.
  • Model options and hyper-parameter search range are provided in the script.
  • We use --fp16 argument to activate apex for GPU memory efficient training except for UnifiedQA-t5-large (trained on A100 GPU).

2. Figure 6: UnifiedQA-large model trained with sub-samples.

  • Run bash ./code/run_ans_gen_subsample.sh.
  • Set sample_size variable accordingly in the script.

3. Table 4: 500 original annotations v.s. completed

  • Run bash ./code/run_ans_gen.sh with model="allenai/unifiedqa-t5-large and suffix="_500original
  • Run bash ./code/run_ans_gen.sh with model="allenai/unifiedqa-t5-large and suffix="_500completed

4. Extractive QA Fine-tuning in Table 3 + Figure 8

Simply run bash ./code/run_span_pred.sh as it is.

Owner
PlusLab
Peng's Language Understanding & Synthesis Lab at UCLA and USC
PlusLab
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition (PyTorch) Paper: https://arxiv.org/abs/2105.01883 Citation: @

260 Jan 03, 2023
[NeurIPS 2021] "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators"

G-PATE This is the official code base for our NeurIPS 2021 paper: "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of T

AI Secure 14 Oct 12, 2022
Este conversor criará a medida exata para sua receita de capuccino gelado da grandiosa Rafaella Ballerini!

ConversorDeMedidas_CapuccinoGelado Este conversor criará a medida exata para sua receita de capuccino gelado da grandiosa Rafaella Ballerini! Requirem

Arthur Ottoni Ribeiro 48 Nov 15, 2022
Python Multi-Agent Reinforcement Learning framework

- Please pay attention to the version of SC2 you are using for your experiments. - Performance is *not* always comparable between versions. - The re

whirl 1.3k Jan 05, 2023
EMNLP 2020 - Summarizing Text on Any Aspects

Summarizing Text on Any Aspects This repo contains preliminary code of the following paper: Summarizing Text on Any Aspects: A Knowledge-Informed Weak

Bowen Tan 35 Nov 14, 2022
[PAMI 2020] Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation

Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation This repository contains the source code for

Yun-Chun Chen 60 Nov 25, 2022
The official implementation of the CVPR2021 paper: Decoupled Dynamic Filter Networks

Decoupled Dynamic Filter Networks This repo is the official implementation of CVPR2021 paper: "Decoupled Dynamic Filter Networks". Introduction DDF is

F.S.Fire 180 Dec 30, 2022
FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS

FaceAPI AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using

Vladimir Mandic 395 Dec 29, 2022
Identify the emotion of multiple speakers in an Audio Segment

MevonAI - Speech Emotion Recognition Identify the emotion of multiple speakers in a Audio Segment Report Bug · Request Feature Try the Demo Here Table

Suyash More 110 Dec 03, 2022
code associated with ACL 2021 DExperts paper

DExperts Hi! This repository contains code for the paper DExperts: Decoding-Time Controlled Text Generation with Experts and Anti-Experts to appear at

Alisa Liu 68 Dec 15, 2022
[CVPR 2021] "Multimodal Motion Prediction with Stacked Transformers": official code implementation and project page.

mmTransformer Introduction This repo is official implementation for mmTransformer in pytorch. Currently, the core code of mmTransformer is implemented

DeciForce: Crossroads of Machine Perception and Autonomy 232 Dec 31, 2022
Exe-to-xlsm - Simple script to create VBscript of exe and inject to xlsm

🎁 Exe To Office Executable file injection to Office documents: .xlsm, .docm, .p

3 Jan 25, 2022
Optimus: the first large-scale pre-trained VAE language model

Optimus: the first pre-trained Big VAE language model This repository contains source code necessary to reproduce the results presented in the EMNLP 2

314 Dec 19, 2022
The comma.ai Calibration Challenge!

Welcome to the comma.ai Calibration Challenge! Your goal is to predict the direction of travel (in camera frame) from provided dashcam video. This rep

comma.ai 697 Jan 05, 2023
🧠 A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation.', ECCV 2016

Deep CORAL A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation. B Sun, K Saenko, ECCV 2016' Deep CORAL can learn

Andy Hsu 200 Dec 25, 2022
SPTAG: A library for fast approximate nearest neighbor search

SPTAG: A library for fast approximate nearest neighbor search SPTAG SPTAG (Space Partition Tree And Graph) is a library for large scale vector approxi

Microsoft 4.3k Jan 01, 2023
Xintao 1.4k Dec 25, 2022
Official Code for ICML 2021 paper "Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline"

Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, Jia Deng Internati

Princeton Vision & Learning Lab 115 Jan 04, 2023
Learning Super-Features for Image Retrieval

Learning Super-Features for Image Retrieval This repository contains the code for running our FIRe model presented in our ICLR'22 paper: @inproceeding

NAVER 101 Dec 28, 2022
A Deep Reinforcement Learning Framework for Stock Market Trading

DQN-Trading This is a framework based on deep reinforcement learning for stock market trading. This project is the implementation code for the two pap

61 Jan 01, 2023