Deep Learning Models for Causal Inference

Overview

Deep Learning Models for Causal Inference (under selection on observables)

While there is a lot of interest in using causal inference to improve deep learning, there aren't many examples of how deep learning can be used for statistical estimation in social science. This repository contains extensive tutorials for building deep learning models to do causal estimation under selection on observables.

I tried to write the tutorials at a very high level so that anybody with a basic understanding of causal inference and machine learning could find them useful. The tutorials assume very little prior knowledge about deep learning and TensorFlow. In addition to featuring relevant models, I hoped that these tutorials could be a gentle introduction for building, tuning, and evaluating your own complex models in Tensorflow 2.

These are a work in a progress. If you have any questions or feedback on how I can improve them, please let me know. The tutorials accompany a review we are currently writing on this literature.

Open In Colab 1. Introduction to Deep Learning for Causal Inference on Observables.

This tutorial introduces the idea of representation learning for causal inference. You also build and test a simple conditional average treatment effect (CATE) estimator, TARNet (first introduced in Shalit et al., 2017), using the TF2 functional API.

Open In Colab 2. Causal Inference Metrics and Hyperparameter Optimization.

Because we do not observe counterfactual outcomes, it's not obvious how to optimize supervised learning models for causal inference. This tutorial introduces some metrics for evaluating model performance. In the first part, you learn how to assess performance on these metrics in Tensorboard. In the second part, we hack Keras Tuner to do hyperparameter optimization for TARNet, and discuss considerations for training models as estimators rather than predictors.

Open In Colab 3. Semi-parametric extensions to TARNet

This tutorial highlights some semi-parametric extensions to TARNet featured in Shi et al., 2020. We add treatment modeling to our TARNet model and build an augmented inverse propensity score estimator. We then briefly describe the algorithm for Targeted Maximum Likelihood Estimation to introduce and build a TARNet with Shi et al.'s Targeted Regularization.

Open In Colab 4. Using Integral Probability Metrics for Causal Inference (IN PROGRESS)

This tutorial features the Counterfactual Regression Network (CFRNet) and propensity-weighted CFRNet featured in Shalit et al., 2017, Johannson et al. 2018, Johannson et al. 2020. This approach relies on Integral Probability Metrics (e.g. the MMD and Wasserstein distance used in GANs) to bound the counterfactual prediction loss and force the treated and control distributions closer together. The weighted variant adds adaptive propensity-based weights that provide a consistency guarantee, relax overlap assumptions, and ideally reduce bias.

Owner
Bernard J Koch
Computational sociologist focused on culture and science. Eccentric interests in DL, CI, networks & Bayesian modeling.
Bernard J Koch
Solving SMPL/MANO parameters from keypoint coordinates.

Minimal-IK A simple and naive inverse kinematics solver for MANO hand model, SMPL body model, and SMPL-H body+hand model. Briefly, given joint coordin

Yuxiao Zhou 305 Dec 30, 2022
Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations.

S2VC Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations. In thi

81 Dec 15, 2022
The code repository for EMNLP 2021 paper "Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization".

Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization [Paper] accepted at the EMNLP 2021: Vision Guided Genera

CAiRE 42 Jan 07, 2023
Self-supervised spatio-spectro-temporal represenation learning for EEG analysis

EEG-Oriented Self-Supervised Learning and Cluster-Aware Adaptation This repository provides a tensorflow implementation of a submitted paper: EEG-Orie

Wonjun Ko 4 Jun 09, 2022
Meta Self-learning for Multi-Source Domain Adaptation: A Benchmark

Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark Project | Arxiv | YouTube | | Abstract In recent years, deep learning-based methods

CVSM Group - email: <a href=[email protected]"> 188 Dec 12, 2022
An Inverse Kinematics library aiming performance and modularity

IKPy Demo Live demos of what IKPy can do (click on the image below to see the video): Also, a presentation of IKPy: Presentation. Features With IKPy,

Pierre Manceron 481 Jan 02, 2023
ICLR21 Tent: Fully Test-Time Adaptation by Entropy Minimization

⛺️ Tent: Fully Test-Time Adaptation by Entropy Minimization This is the official project repository for Tent: Fully-Test Time Adaptation by Entropy Mi

Dequan Wang 204 Dec 25, 2022
Implementation for the EMNLP 2021 paper "Interactive Machine Comprehension with Dynamic Knowledge Graphs".

Interactive Machine Comprehension with Dynamic Knowledge Graphs Implementation for the EMNLP 2021 paper. Dependencies apt-get -y update apt-get instal

Xingdi (Eric) Yuan 19 Aug 23, 2022
Codebase for BMVC 2021 paper "Text Based Person Search with Limited Data"

Text Based Person Search with Limited Data This is the codebase for our BMVC 2021 paper. Please bear with me refactoring this codebase after CVPR dead

Xiao Han 33 Nov 24, 2022
This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR

This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR,which is an open-source toolbox based on PyTorch. The overall architecture will be sh

Jianquan Ye 82 Nov 17, 2022
Hierarchical Attentive Recurrent Tracking

Hierarchical Attentive Recurrent Tracking This is an official Tensorflow implementation of single object tracking in videos by using hierarchical atte

Adam Kosiorek 147 Aug 07, 2021
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Tr

Sber AI 230 Dec 31, 2022
Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh

generate_cloud_points Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh. Run python disp_mesh.py Or you

Peng Yu 2 Dec 24, 2021
Project page for End-to-end Recovery of Human Shape and Pose

End-to-end Recovery of Human Shape and Pose Angjoo Kanazawa, Michael J. Black, David W. Jacobs, Jitendra Malik CVPR 2018 Project Page Requirements Pyt

1.4k Dec 29, 2022
Additional environments compatible with OpenAI gym

Decentralized Control of Quadrotor Swarms with End-to-end Deep Reinforcement Learning A codebase for training reinforcement learning policies for quad

Zhehui Huang 40 Dec 06, 2022
A Small and Easy approach to the BraTS2020 dataset (2D Segmentation)

BraTS2020 A Light & Scalable Solution to BraTS2020 | Medical Brain Tumor Segmentation (2D Segmentation) Developed the segmentation models for segregat

Gunjan Haldar 0 Jan 19, 2022
A library of multi-agent reinforcement learning components and systems

Mava: a research framework for distributed multi-agent reinforcement learning Table of Contents Overview Getting Started Supported Environments System

InstaDeep Ltd 463 Dec 23, 2022
Pytorch Implementation for Dilated Continuous Random Field

DilatedCRF Pytorch implementation for fully-learnable DilatedCRF. If you find my work helpful, please consider our paper: @article{Mo2022dilatedcrf,

DunnoCoding_Plus 3 Nov 13, 2022
Kaggle Ultrasound Nerve Segmentation competition [Keras]

Ultrasound nerve segmentation using Keras (1.0.7) Kaggle Ultrasound Nerve Segmentation competition [Keras] #Install (Ubuntu {14,16}, GPU) cuDNN requir

179 Dec 28, 2022