Unified learning approach for egocentric hand gesture recognition and fingertip detection

Overview

Unified Gesture Recognition and Fingertip Detection

A unified convolutional neural network (CNN) algorithm for both hand gesture recognition and fingertip detection at the same time. The proposed algorithm uses a single network to predict both finger class probabilities for classification and fingertips positional output for regression in one evaluation. From the finger class probabilities, the gesture is recognized, and using both of the information fingertips are localized. Instead of directly regressing the fingertips position from the fully connected (FC) layer of the CNN, we regress the ensemble of fingertips position from a fully convolutional network (FCN) and subsequently take ensemble average to regress the final fingertips positional output.

Update

Included robust real-time hand detection using yolo for better smooth performance in the first stage of the detection system and most of the code has been cleaned and restructured for ease of use. To get the previous versions, please visit the release section.

GitHub stars GitHub forks GitHub issues Version GitHub license

Requirements

  • TensorFlow-GPU==2.2.0
  • OpenCV==4.2.0
  • ImgAug==0.2.6
  • Weights: Download the pre-trained weights files of the unified gesture recognition and fingertip detection model and put the weights folder in the working directory.

Downloads Downloads

The weights folder contains three weights files. The fingertip.h5 is for unified gesture recignition and finertiop detection. yolo.h5 and solo.h5 are for the yolo and solo method of hand detection. (what is solo?)

Paper

Paper Paper

To get more information about the proposed method and experiments, please go through the paper. Cite the paper as:

@article{alam2021unified,
title = {Unified learning approach for egocentric hand gesture recognition and fingertip detection},
author={Alam, Mohammad Mahmudul and Islam, Mohammad Tariqul and Rahman, SM Mahbubur},
journal = {Pattern Recognition},
volume = {121},
pages = {108200},
year = {2021},
publisher={Elsevier},
}

Dataset

The proposed gesture recognition and fingertip detection model is trained by employing Scut-Ego-Gesture Dataset which has a total of eleven different single hand gesture datasets. Among the eleven different gesture datasets, eight of them are considered for experimentation. A detailed explanation about the partition of the dataset along with the list of the images used in the training, validation, and the test set is provided in the dataset/ folder.

Network Architecture

To implement the algorithm, the following network architecture is proposed where a single CNN is utilized for both hand gesture recognition and fingertip detection.

Prediction

To get the prediction on a single image run the predict.py file. It will run the prediction in the sample image stored in the data/ folder. Here is the output for the sample.jpg image.

Real-Time!

To run in real-time simply clone the repository and download the weights file and then run the real-time.py file.

directory > python real-time.py

In real-time execution, there are two stages. In the first stage, the hand can be detected by using either you only look once (yolo) or single object localization (solo) algorithm. By default, yolo will be used here. The detected hand portion is then cropped and fed to the second stage for gesture recognition and fingertip detection.

Output

Here is the output of the unified gesture recognition and fingertip detection model for all of the 8 classes of the dataset where not only each fingertip is detected but also each finger is classified.

Comments
  • Datasets

    Datasets

    Hello, I have a question about the dataset from your readme, I can't download the Scut-Ego-Gesture Dataset ,Because in China, this website has been banned. Can you share it with me in other ways? For example, Google or QQ email: [email protected]

    opened by CVUsers 10
  • how to download the weights, code not contain?

    how to download the weights, code not contain?

    The weights folder contains three weights files. The comparison.h5 is for first five classes and performance.h5 is for first eight classes. solo.h5 is for hand detection. but no link

    opened by mmxuan18 6
  • OSError: Unable to open file (unable to open file: name = 'yolo.h5', errno = 2, error message = 'No such file or directory', flags = 0, o_flags = 0)

    OSError: Unable to open file (unable to open file: name = 'yolo.h5', errno = 2, error message = 'No such file or directory', flags = 0, o_flags = 0)

    I use the Mac Os to run thereal-time.py file, and get the OSError, I also search on Google to find others' the same problem. It is probably the Keras problem. But I do not how to solve it

    opened by Hanswanglin 4
  • OSError: Unable to open file (unable to open file: name = 'weights/performance.h5', errno = 2, error message = 'No such file or directory', flags = 0, o_flags = 0)

    OSError: Unable to open file (unable to open file: name = 'weights/performance.h5', errno = 2, error message = 'No such file or directory', flags = 0, o_flags = 0)

    File "h5py/_objects.pyx", line 54, in h5py._objects.with_phil.wrapper File "h5py/_objects.pyx", line 55, in h5py._objects.with_phil.wrapper File "h5py/h5f.pyx", line 88, in h5py.h5f.open OSError: Unable to open file (unable to open file: name = 'weights/performance.h5', errno = 2, error message = 'No such file or directory', flags = 0, o_flags = 0)

    opened by Jasonmes 2
  • left hand?

    left hand?

    Hi, first it's really cool work!

    Is the left hand included in the training images? I have been playing around with some of my own images and it seems that it doesn't really recognize the left hand in a palm-down position...

    If I want to include the left hand, do you think it would be possible if I train the network with the image flipped?

    opened by myhjiang 1
  • why are there two hand detection provided?

    why are there two hand detection provided?

    A wonderful work!!As mentioned above, the Yolo and Solo detection models are provided. I wonder what is the advatange of each model comparing to the other and what is the dataset to train the detect.

    opened by DanielMao2015 1
  • Difference of classes5.h5 and classes8.h5

    Difference of classes5.h5 and classes8.h5

    Hi, May i know the difference when training classes5 and classes8? are the difference from the dataset used for training by excluding SingleSix, SingleSeven, SingleEight or there are other modification such as changing the model structure or parameters?

    Thanks

    opened by danieltanimanuel 1
  • Using old versions of tensorflow, can't install the dependencies on my macbook and with newer versions it's constatly failing.

    Using old versions of tensorflow, can't install the dependencies on my macbook and with newer versions it's constatly failing.

    When trying to install the required version of tensorflow:

    pip3 install tensorflow==1.15.0
    ERROR: Could not find a version that satisfies the requirement tensorflow==1.15.0 (from versions: 2.2.0rc3, 2.2.0rc4, 2.2.0, 2.2.1, 2.2.2, 2.3.0rc0, 2.3.0rc1, 2.3.0rc2, 2.3.0, 2.3.1, 2.3.2, 2.4.0rc0, 2.4.0rc1, 2.4.0rc2, 2.4.0rc3, 2.4.0rc4, 2.4.0, 2.4.1)
    ERROR: No matching distribution found for tensorflow==1.15.0
    

    I even tried downloading the .whl file from the pypi and try manually installing it, but that didn't work too:

    pip3 install ~/Downloads/tensorflow-1.15.0-cp37-cp37m-macosx_10_11_x86_64.whl
    ERROR: tensorflow-1.15.0-cp37-cp37m-macosx_10_11_x86_64.whl is not a supported wheel on this platform.
    

    Tried with both python3.6 and python3.8

    So it would be great to update the dependencies :)

    opened by KoStard 1
  • Custom Model keyword arguments Error

    Custom Model keyword arguments Error

    Change model = Model(input=model.input, outputs=[probability, position]) to model = Model(inputs=model.input, outputs=[probability, position]) on line 22 of net/network.py

    opened by Rohit-Jain-2801 1
  • Problem of weights

    Problem of weights

    Hi,when load the solo.h5(In solo.py line 14:"self.model.load_weights(weights)") it will report errors: Process finished with exit code -1073741819 (0xC0000005) keras2.2.5+tensorflow1.14.0+cuda10.0

    opened by MC-E 1
Releases(v2.0)
Owner
Mohammad
Machine Learning | Graduate Research Assistant at CORAL Lab
Mohammad
Code of 3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces

3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces Installation After cloning the repo open

37 Dec 03, 2022
NAVER BoostCamp Final Project

CV 14조 final project Super Resolution and Deblur module Inference code & Pretrained weight Repo SwinIR Deblur 실행 방법 streamlit run WebServer/Server_SRD

JiSeong Kim 5 Sep 06, 2022
Python-based Informatics Kit for Analysing Chemical Units

INSTALLATION Python-based Informatics Kit for the Analysis of Chemical Units Step 1: Make a conda environment: conda create -n pikachu python=3.9 cond

47 Dec 23, 2022
Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph

Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph This repository provides a pipeline to create a knowledge graph from ra

AWS Samples 3 Jan 01, 2022
Turning SymPy expressions into JAX functions

sympy2jax Turn SymPy expressions into parametrized, differentiable, vectorizable, JAX functions. All SymPy floats become trainable input parameters. S

Miles Cranmer 38 Dec 11, 2022
StyleGAN of All Trades: Image Manipulation withOnly Pretrained StyleGAN

StyleGAN of All Trades: Image Manipulation withOnly Pretrained StyleGAN This is the PyTorch implementation of StyleGAN of All Trades: Image Manipulati

360 Dec 28, 2022
Aalto-cs-msc-theses - Listing of M.Sc. Theses of the Department of Computer Science at Aalto University

Aalto-CS-MSc-Theses Listing of M.Sc. Theses of the Department of Computer Scienc

Jorma Laaksonen 3 Jan 27, 2022
Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation"

Implicit-Semantic-Response-Alignment Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation" Prerequisites pyt

4 Dec 19, 2022
TensorFlow implementation of the paper "Hierarchical Attention Networks for Document Classification"

Hierarchical Attention Networks for Document Classification This is an implementation of the paper Hierarchical Attention Networks for Document Classi

Quoc-Tuan Truong 83 Dec 05, 2022
Code for the paper "Learning-Augmented Algorithms for Online Steiner Tree"

Learning-Augmented Algorithms for Online Steiner Tree This is the code for the paper "Learning-Augmented Algorithms for Online Steiner Tree". Requirem

0 Dec 09, 2021
EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration

EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration Ruikang Xu, Zeyu Xiao, Jie Huang, Yueyi Zhang, Zhiwei Xiong. EDPN: Enhanced Deep Pyra

69 Dec 15, 2022
YoHa - A practical hand tracking engine.

YoHa - A practical hand tracking engine.

2k Jan 06, 2023
"Learning and Analyzing Generation Order for Undirected Sequence Models" in Findings of EMNLP, 2021

undirected-generation-dev This repo contains the source code of the models described in the following paper "Learning and Analyzing Generation Order f

Yichen Jiang 0 Mar 25, 2022
PyTorch implementation of the WarpedGANSpace: Finding non-linear RBF paths in GAN latent space (ICCV 2021)

Authors official PyTorch implementation of the "WarpedGANSpace: Finding non-linear RBF paths in GAN latent space" [ICCV 2021].

Christos Tzelepis 100 Dec 06, 2022
A TensorFlow implementation of DeepMind's WaveNet paper

A TensorFlow implementation of DeepMind's WaveNet paper This is a TensorFlow implementation of the WaveNet generative neural network architecture for

Igor Babuschkin 5.3k Dec 28, 2022
Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation (ICCV2021)

Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation This is a pytorch project for the paper Dynamic Divide-and-Conquer Ad

DV Lab 29 Nov 21, 2022
retweet 4 satoshi ⚡️

rt4sat retweet 4 satoshi This bot is the codebase for https://twitter.com/rt4sat please feel free to create an issue if you saw any bugs basically thi

6 Sep 30, 2022
MonoRCNN is a monocular 3D object detection method for automonous driving

MonoRCNN MonoRCNN is a monocular 3D object detection method for automonous driving, published at ICCV 2021. This project is an implementation of MonoR

87 Dec 27, 2022
基于Flask开发后端、VUE开发前端框架,在WEB端部署YOLOv5目标检测模型

基于Flask开发后端、VUE开发前端框架,在WEB端部署YOLOv5目标检测模型

37 Jan 01, 2023
Rayvens makes it possible for data scientists to access hundreds of data services within Ray with little effort.

Rayvens augments Ray with events. With Rayvens, Ray applications can subscribe to event streams, process and produce events. Rayvens leverages Apache

CodeFlare 32 Dec 25, 2022