CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms

Overview

PyPI - Python Version GitHub Workflow Status Read the Docs Code style: black

CARLA - Counterfactual And Recourse Library

CARLA is a python library to benchmark counterfactual explanation and recourse models. It comes out-of-the box with commonly used datasets and various machine learning models. Designed with extensibility in mind: Easily include your own counterfactual methods, new machine learning models or other datasets.

Find extensive documentation here! Our arXiv paper can be found here.

Available Datasets

Implemented Counterfactual Methods

  • Actionable Recourse (AR): Paper
  • CCHVAE: Paper
  • Contrastive Explanations Method (CEM): Paper
  • Counterfactual Latent Uncertainty Explanations (CLUE): Paper
  • CRUDS: Paper
  • Diverse Counterfactual Explanations (DiCE): Paper
  • Feasible and Actionable Counterfactual Explanations (FACE): Paper
  • Growing Sphere (GS): Paper
  • Revise: Paper
  • Wachter: Paper

Provided Machine Learning Models

  • ANN: Artificial Neural Network with 2 hidden layers and ReLU activation function
  • LR: Linear Model with no hidden layer and no activation function

Which Recourse Methods work with which ML framework?

The framework a counterfactual method currently works with is dependent on its underlying implementation. It is planned to make all recourse methods available for all ML frameworks . The latest state can be found here:

Recourse Method Tensorflow Pytorch
Actionable Recourse X X
CCHVAE X
CEM X
CLUE X
CRUDS X
DiCE X X
FACE X X
Growing Spheres X X
Revise X
Wachter X

Installation

Requirements

  • python3.7
  • pip

Install via pip

pip install carla-recourse

Usage Example

from carla import DataCatalog, MLModelCatalog
from carla.recourse_methods import GrowingSpheres

# load a catalog dataset
data_name = "adult"
dataset = DataCatalog(data_name)

# load artificial neural network from catalog
model = MLModelCatalog(dataset, "ann")

# get factuals from the data to generate counterfactual examples
factuals = dataset.raw.iloc[:10]

# load a recourse model and pass black box model
gs = GrowingSpheres(model)

# generate counterfactual examples
counterfactuals = gs.get_counterfactuals(factuals)

Contributing

Requirements

  • python3.7-venv (when not already shipped with python3.7)
  • Recommended: GNU Make

Installation

Using make:

make requirements

Using python directly or within activated virtual environment:

pip install -U pip setuptools wheel
pip install -e .

Testing

Using make:

make test

Using python directly or within activated virtual environment:

pip install -r requirements-dev.txt
python -m pytest test/*

Linting and Styling

We use pre-commit hooks within our build pipelines to enforce:

  • Python linting with flake8.
  • Python styling with black.

Install pre-commit with:

make install-dev

Using python directly or within activated virtual environment:

pip install -r requirements-dev.txt
pre-commit install

Licence

carla is under the MIT Licence. See the LICENCE for more details.

Citation

This project was recently accepted to NeurIPS 2021 (Benchmark & Data Sets Track). If you use this codebase, please cite:

@misc{pawelczyk2021carla,
      title={CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms},
      author={Martin Pawelczyk and Sascha Bielawski and Johannes van den Heuvel and Tobias Richter and Gjergji Kasneci},
      year={2021},
      eprint={2108.00783},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
Owner
Carla Recourse
Carla Recourse
(CVPR 2022 - oral) Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry

Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry Official implementation of the paper Multi-View Depth Est

Bae, Gwangbin 138 Dec 28, 2022
This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR)

CEDR This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR) introduced in the following paper

phoenix 3 Feb 27, 2022
An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models.

DeepNER An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models. This repository contains complex Deep

Derrick 9 May 30, 2022
Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition

Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition | paper | dataset | pretrained detection model | Authors: Yi-Chang Che

Yi-Chang Chen 1 Aug 23, 2022
DockStream: A Docking Wrapper to Enhance De Novo Molecular Design

DockStream Description DockStream is a docking wrapper providing access to a collection of ligand embedders and docking backends. Docking execution an

AstraZeneca - Molecular AI 72 Jan 02, 2023
HistoKT: Cross Knowledge Transfer in Computational Pathology

HistoKT: Cross Knowledge Transfer in Computational Pathology Exciting News! HistoKT has been accepted to ICASSP 2022. HistoKT: Cross Knowledge Transfe

Mahdi S. Hosseini 5 Jan 05, 2023
X-modaler is a versatile and high-performance codebase for cross-modal analytics.

X-modaler X-modaler is a versatile and high-performance codebase for cross-modal analytics. This codebase unifies comprehensive high-quality modules i

910 Dec 28, 2022
基于Paddle框架的arcface复现

arcface-Paddle 基于Paddle框架的arcface复现 ArcFace-Paddle 本项目基于paddlepaddle框架复现ArcFace,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: InsightFace Padd

QuanHao Guo 16 Dec 15, 2022
Official Pytorch implementation for "End2End Occluded Face Recognition by Masking Corrupted Features, TPAMI 2021"

End2End Occluded Face Recognition by Masking Corrupted Features This is the Pytorch implementation of our TPAMI 2021 paper End2End Occluded Face Recog

Haibo Qiu 25 Oct 31, 2022
PyTorch implementation of TSception V2 using DEAP dataset

TSception This is the PyTorch implementation of TSception V2 using DEAP dataset in our paper: Yi Ding, Neethu Robinson, Su Zhang, Qiuhao Zeng, Cuntai

Yi Ding 27 Dec 15, 2022
Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding (CVPR2022)

Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding by Qiaole Dong*, Chenjie Cao*, Yanwei Fu Paper and Supple

Qiaole Dong 190 Dec 27, 2022
Concept drift monitoring for HA model servers.

{Fast, Correct, Simple} - pick three Easily compare training and production ML data & model distributions Goals Boxkite is an instrumentation library

98 Dec 15, 2022
Deep Learning Head Pose Estimation using PyTorch.

Hopenet is an accurate and easy to use head pose estimation network. Models have been trained on the 300W-LP dataset and have been tested on real data with good qualitative performance.

Nataniel Ruiz 1.3k Dec 26, 2022
Code for the AAAI-2022 paper: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification (AAAI 2022) Prerequisite PyTorch = 1.2.0 P

16 Dec 14, 2022
A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset.

A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset. This repo contains scripts to train RL agents to navigate the closed world and collect vi

MUGEN 11 Oct 22, 2022
Optimized Gillespie algorithm for simulating Stochastic sPAtial models of Cancer Evolution (OG-SPACE)

OG-SPACE Introduction Optimized Gillespie algorithm for simulating Stochastic sPAtial models of Cancer Evolution (OG-SPACE) is a computational framewo

Data and Computational Biology Group UNIMIB (was BI*oinformatics MI*lan B*icocca) 0 Nov 17, 2021
Nsdf: A mesh SDF with just some code we can directly paste into our raymarcher

nsdf Representing SDFs of arbitrary meshes has been a bit tricky so far. Express

Jan Ivanecky 5 Feb 18, 2022
Your interactive network visualizing dashboard

Your interactive network visualizing dashboard Documentation: Here What is Jaal Jaal is a python based interactive network visualizing tool built usin

Mohit 177 Jan 04, 2023
Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.

DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to

Mohamed Ali Souibgui 74 Jan 07, 2023
Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Emile van Krieken 140 Dec 30, 2022