X-modaler is a versatile and high-performance codebase for cross-modal analytics.

Overview

X-modaler

X-modaler is a versatile and high-performance codebase for cross-modal analytics. This codebase unifies comprehensive high-quality modules in state-of-the-art vision-language techniques, which are organized in a standardized and user-friendly fashion.

The original paper can be found here.

Installation

See installation instructions.

Requiremenets

  • Linux or macOS with Python â‰Ĩ 3.6
  • PyTorch â‰Ĩ 1.8 and torchvision that matches the PyTorch installation. Install them together at pytorch.org to make sure of this
  • fvcore
  • pytorch_transformers
  • jsonlines
  • pycocotools

Getting Started

See Getting Started with X-modaler

Training & Evaluation in Command Line

We provide a script in "train_net.py", that is made to train all the configs provided in X-modaler. You may want to use it as a reference to write your own training script.

To train a model(e.g., UpDown) with "train_net.py", first setup the corresponding datasets following datasets, then run:

# Teacher Force
python train_net.py --num-gpus 4 \
 	--config-file configs/image_caption/updown.yaml

# Reinforcement Learning
python train_net.py --num-gpus 4 \
 	--config-file configs/image_caption/updown_rl.yaml

Model Zoo and Baselines

A large set of baseline results and trained models are available here.

Image Captioning
Attention Show, attend and tell: Neural image caption generation with visual attention ICML 2015
LSTM-A3 Boosting image captioning with attributes ICCV 2017
Up-Down Bottom-up and top-down attention for image captioning and visual question answering CVPR 2018
GCN-LSTM Exploring visual relationship for image captioning ECCV 2018
Transformer Conceptual captions: A cleaned, hypernymed, image alt-text dataset for automatic image captioning ACL 2018
Meshed-Memory Meshed-Memory Transformer for Image Captioning CVPR 2020
X-LAN X-Linear Attention Networks for Image Captioning CVPR 2020
Video Captioning
MP-LSTM Translating Videos to Natural Language Using Deep Recurrent Neural Networks NAACL HLT 2015
TA Describing Videos by Exploiting Temporal Structure ICCV 2015
Transformer Conceptual captions: A cleaned, hypernymed, image alt-text dataset for automatic image captioning ACL 2018
TDConvED Temporal Deformable Convolutional Encoder-Decoder Networks for Video Captioning AAAI 2019
Vision-Language Pretraining
Uniter UNITER: UNiversal Image-TExt Representation Learning ECCV 2020
TDEN Scheduled Sampling in Vision-Language Pretraining with Decoupled Encoder-Decoder Network AAAI 2021

Image Captioning on MSCOCO (Cross-Entropy Loss)

Name Model [email protected] [email protected] [email protected] [email protected] METEOR ROUGE-L CIDEr-D SPICE
LSTM-A3 GoogleDrive 75.3 59.0 45.4 35.0 26.7 55.6 107.7 19.7
Attention GoogleDrive 76.4 60.6 46.9 36.1 27.6 56.6 113.0 20.4
Up-Down GoogleDrive 76.3 60.3 46.6 36.0 27.6 56.6 113.1 20.7
GCN-LSTM GoogleDrive 76.8 61.1 47.6 36.9 28.2 57.2 116.3 21.2
Transformer GoogleDrive 76.4 60.3 46.5 35.8 28.2 56.7 116.6 21.3
Meshed-Memory GoogleDrive 76.3 60.2 46.4 35.6 28.1 56.5 116.0 21.2
X-LAN GoogleDrive 77.5 61.9 48.3 37.5 28.6 57.6 120.7 21.9
TDEN GoogleDrive 75.5 59.4 45.7 34.9 28.7 56.7 116.3 22.0

Image Captioning on MSCOCO (CIDEr Score Optimization)

Name Model [email protected] [email protected] [email protected] [email protected] METEOR ROUGE-L CIDEr-D SPICE
LSTM-A3 GoogleDrive 77.9 61.5 46.7 35.0 27.1 56.3 117.0 20.5
Attention GoogleDrive 79.4 63.5 48.9 37.1 27.9 57.6 123.1 21.3
Up-Down GoogleDrive 80.1 64.3 49.7 37.7 28.0 58.0 124.7 21.5
GCN-LSTM GoogleDrive 80.2 64.7 50.3 38.5 28.5 58.4 127.2 22.1
Transformer GoogleDrive 80.5 65.4 51.1 39.2 29.1 58.7 130.0 23.0
Meshed-Memory GoogleDrive 80.7 65.5 51.4 39.6 29.2 58.9 131.1 22.9
X-LAN GoogleDrive 80.4 65.2 51.0 39.2 29.4 59.0 131.0 23.2
TDEN GoogleDrive 81.3 66.3 52.0 40.1 29.6 59.8 132.6 23.4

Video Captioning on MSVD

Name Model [email protected] [email protected] [email protected] [email protected] METEOR ROUGE-L CIDEr-D SPICE
MP-LSTM GoogleDrive 77.0 65.6 56.9 48.1 32.4 68.1 73.1 4.8
TA GoogleDrive 80.4 68.9 60.1 51.0 33.5 70.0 77.2 4.9
Transformer GoogleDrive 79.0 67.6 58.5 49.4 33.3 68.7 80.3 4.9
TDConvED GoogleDrive 81.6 70.4 61.3 51.7 34.1 70.4 77.8 5.0

Video Captioning on MSR-VTT

Name Model [email protected] [email protected] [email protected] [email protected] METEOR ROUGE-L CIDEr-D SPICE
MP-LSTM GoogleDrive 73.6 60.8 49.0 38.6 26.0 58.3 41.1 5.6
TA GoogleDrive 74.3 61.8 50.3 39.9 26.4 59.4 42.9 5.8
Transformer GoogleDrive 75.4 62.3 50.0 39.2 26.5 58.7 44.0 5.9
TDConvED GoogleDrive 76.4 62.3 49.9 38.9 26.3 59.0 40.7 5.7

Visual Question Answering

Name Model Overall Yes/No Number Other
Uniter GoogleDrive 70.1 86.8 53.7 59.6
TDEN GoogleDrive 71.9 88.3 54.3 62.0

Caption-based image retrieval on Flickr30k

Name Model R1 R5 R10
Uniter GoogleDrive 61.6 87.7 92.8
TDEN GoogleDrive 62.0 86.6 92.4

Visual commonsense reasoning

Name Model Q -> A QA -> R Q -> AR
Uniter GoogleDrive 73.0 75.3 55.4
TDEN GoogleDrive 75.0 76.5 57.7

License

X-modaler is released under the Apache License, Version 2.0.

Citing X-modaler

If you use X-modaler in your research, please use the following BibTeX entry.

@inproceedings{Xmodaler2021,
  author =       {Yehao Li, Yingwei Pan, Jingwen Chen, Ting Yao, and Tao Mei},
  title =        {X-modaler: A Versatile and High-performance Codebase for Cross-modal Analytics},
  booktitle =    {Proceedings of the 29th ACM international conference on Multimedia},
  year =         {2021}
}
Tensorflow 2 implementations of the C-SimCLR and C-BYOL self-supervised visual representation methods from "Compressive Visual Representations" (NeurIPS 2021)

Compressive Visual Representations This repository contains the source code for our paper, Compressive Visual Representations. We developed informatio

Google Research 30 Nov 23, 2022
Adaptable tools to make reinforcement learning and evolutionary computation algorithms.

Pearl The Parallel Evolutionary and Reinforcement Learning Library (Pearl) is a pytorch based package with the goal of being excellent for rapid proto

38 Jan 01, 2023
A stock generator that assess a list of stocks and returns the best stocks for investing and money allocations based on users choices of volatility, duration and number of stocks

Stock-Generator Please visit "Stock Generator.ipynb" for a clearer view and "Stock Generator.py" for scripts. The stock generator is designed to allow

jmengnyay 1 Aug 02, 2022
A Pytree Module system for Deep Learning in JAX

Treex A Pytree-based Module system for Deep Learning in JAX Intuitive: Modules are simple Python objects that respect Object-Oriented semantics and sh

Cristian Garcia 216 Dec 20, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | įŽ€äŊ“中文 | įšéĢ”ä¸­æ–‡ State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo

Hugging Face 77.2k Jan 02, 2023
EfficientMPC - Efficient Model Predictive Control Implementation

efficientMPC Efficient Model Predictive Control Implementation The original algo

Vin 8 Dec 04, 2022
Web service for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation based on OpenFace 2.0

OpenGaze: Web Service for OpenFace Facial Behaviour Analysis Toolkit Overview OpenFace is a fantastic tool intended for computer vision and machine le

Sayom Shakib 4 Nov 03, 2022
Main repository for the HackBio'2021 Virtual Internship Experience for #Team-Greider â¤ī¸

Hello 🤟 #Team-Greider The team of 20 people for HackBio'2021 Virtual Bioinformatics Internship 💝 đŸ–¨ī¸ 👨‍đŸ’ģ HackBio: https://thehackbio.com đŸ’Ŧ Ask us

Siddhant Sharma 7 Oct 20, 2022
Tom-the-AI - A compound artificial intelligence software for Linux systems.

Tom the AI (version 0.82) WARNING: This software is not yet ready to use, I'm still setting up the GitHub repository. Should be ready in a few days. T

2 Apr 28, 2022
Hierarchical User Intent Graph Network for Multimedia Recommendation

Hierarchical User Intent Graph Network for Multimedia Recommendation This is our Pytorch implementation for the paper: Hierarchical User Intent Graph

6 Jan 05, 2023
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
A pytorch-based real-time segmentation model for autonomous driving

CFPNet: Channel-Wise Feature Pyramid for Real-Time Semantic Segmentation This project contains the Pytorch implementation for the proposed CFPNet: pap

342 Dec 22, 2022
NaturalProofs: Mathematical Theorem Proving in Natural Language

NaturalProofs: Mathematical Theorem Proving in Natural Language NaturalProofs: Mathematical Theorem Proving in Natural Language Sean Welleck, Jiacheng

Sean Welleck 83 Jan 05, 2023
CVPR 2021: "The Spatially-Correlative Loss for Various Image Translation Tasks"

Spatially-Correlative Loss arXiv | website We provide the Pytorch implementation of "The Spatially-Correlative Loss for Various Image Translation Task

Chuanxia Zheng 89 Jan 04, 2023
Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh

generate_cloud_points Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh. Run python disp_mesh.py Or you

Peng Yu 2 Dec 24, 2021
Code repository for the paper: Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild (ICCV 2021)

Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild Akash Sengupta, Ignas Budvytis, Robert

Akash Sengupta 149 Dec 14, 2022
Code for Multimodal Neural SLAM for Interactive Instruction Following

Code for Multimodal Neural SLAM for Interactive Instruction Following Code structure The code is adapted from E.T. and most training as well as data p

7 Dec 07, 2022
This repository contains the official implementation code of the paper Transformer-based Feature Reconstruction Network for Robust Multimodal Sentiment Analysis

This repository contains the official implementation code of the paper Transformer-based Feature Reconstruction Network for Robust Multimodal Sentiment Analysis, accepted at ACMMM 2021.

Ziqi Yuan 10 Sep 30, 2022
Semi-Supervised Learning with Ladder Networks in Keras. Get 98% test accuracy on MNIST with just 100 labeled examples !

Semi-Supervised Learning with Ladder Networks in Keras This is an implementation of Ladder Network in Keras. Ladder network is a model for semi-superv

Divam Gupta 101 Sep 07, 2022
Implementation of [Time in a Box: Advancing Knowledge Graph Completion with Temporal Scopes].

Time2box Implementation of [Time in a Box: Advancing Knowledge Graph Completion with Temporal Scopes].

LingCai 4 Aug 23, 2022