PyTorch implementation of TSception V2 using DEAP dataset

Overview

TSception

This is the PyTorch implementation of TSception V2 using DEAP dataset in our paper:

Yi Ding, Neethu Robinson, Su Zhang, Qiuhao Zeng, Cuntai Guan, "TSception: Capturing Temporal Dynamics and Spatial Asymmetry from EEG for Emotion Recognition", under review of IEEE Transactions on Affective Computing, preprint available at arXiv

It is an end-to-end multi-scale convolutional neural network to do classification from raw EEG signals. Previous version of TSception(IJCNN'20) can be found at website

Prepare the python virtual environment

Please create an anaconda virtual environment by:

$ conda create --name TSception

Activate the virtual environment by:

$ conda activate TSception

Install the requirements by:

$ pip3 install -r requirements.txt

Run the code

Please download the DEAP dataset at website. Please place the "data_preprocessed_python" folder at the same location of the script (./code/). To run the code for arousal dimension, please type the following command in terminal:

$ python3 main-DEAP.py --data-path './data_preprocessed_python/' --label-type 'A'

To run the experiments for valance please set the --label-type 'V'. The results will be saved into "result.txt" located at the same place as the script.

Reproduce the results

We highly suggest to run the code on a Ubuntu 18.04 or above machine using anaconda with the provided requirements to reproduce the results. You can also download the saved model at website to reproduce the results in the paper. After extracting the downloaded "save.zip", please place it at the same location of the scripts, run the code by:

$ python3 main-DEAP.py --data-path './data_preprocessed_python/' --label-type 'A' --reproduce True

Acknowledgment

The author would like to thank Su Zhang, Quihao Zeng and Tushar Chouhan for checking the code

Cite

Please cite our paper if you use our code in your own work:

@misc{ding2021tsception,
      title={TSception: Capturing Temporal Dynamics and Spatial Asymmetry from EEG for Emotion Recognition}, 
      author={Yi Ding and Neethu Robinson and Su Zhang and Qiuhao Zeng and Cuntai Guan},
      year={2021},
      eprint={2104.02935},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

OR

@INPROCEEDINGS{9206750,
  author={Y. {Ding} and N. {Robinson} and Q. {Zeng} and D. {Chen} and A. A. {Phyo Wai} and T. -S. {Lee} and C. {Guan}},
  booktitle={2020 International Joint Conference on Neural Networks (IJCNN)}, 
  title={TSception:A Deep Learning Framework for Emotion Detection Using EEG}, 
  year={2020},
  volume={},
  number={},
  pages={1-7},
  doi={10.1109/IJCNN48605.2020.9206750}}
Owner
Yi Ding
Ph.D. candidate in Computer Science and Engineering. Research interests: deep/machine learning, brain-computer interface, artificial intelligence
Yi Ding
Codes of the paper Deformable Butterfly: A Highly Structured and Sparse Linear Transform.

Deformable Butterfly: A Highly Structured and Sparse Linear Transform DeBut Advantages DeBut generalizes the square power of two butterfly factor matr

Rui LIN 8 Jun 10, 2022
Voice Conversion Using Speech-to-Speech Neuro-Style Transfer

This repo contains the official implementation of the VAE-GAN from the INTERSPEECH 2020 paper Voice Conversion Using Speech-to-Speech Neuro-Style Transfer.

Ehab AlBadawy 93 Jan 05, 2023
Occlusion robust 3D face reconstruction model in CFR-GAN (WACV 2022)

Occlusion Robust 3D face Reconstruction Yeong-Joon Ju, Gun-Hee Lee, Jung-Ho Hong, and Seong-Whan Lee Code for Occlusion Robust 3D Face Reconstruction

Yeongjoon 31 Dec 19, 2022
A plug-and-play library for neural networks written in Python

A plug-and-play library for neural networks written in Python!

Dimos Michailidis 2 Jul 16, 2022
Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based Analysis Framework"

Privacy-Aware Inverse RL (PRIL) Analysis Framework Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based

1 Dec 06, 2021
Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Real-ESRGAN Colab Demo for Real-ESRGAN . Portable Windows executable file. You can find more information here. Real-ESRGAN aims at developing Practica

Xintao 17.2k Jan 02, 2023
PyTorch code for Vision Transformers training with the Self-Supervised learning method DINO

Self-Supervised Vision Transformers with DINO PyTorch implementation and pretrained models for DINO. For details, see Emerging Properties in Self-Supe

Facebook Research 4.2k Jan 03, 2023
This is an early in-development version of training CLIP models with hivemind.

A transformer that does not hog your GPU memory This is an early in-development codebase: if you want a stable and documented hivemind codebase, look

<a href=[email protected]"> 4 Nov 06, 2022
GLM (General Language Model)

GLM GLM is a General Language Model pretrained with an autoregressive blank-filling objective and can be finetuned on various natural language underst

THUDM 421 Jan 04, 2023
Header-only library for using Keras models in C++.

frugally-deep Use Keras models in C++ with ease Table of contents Introduction Usage Performance Requirements and Installation FAQ Introduction Would

Tobias Hermann 927 Jan 05, 2023
GARCH and Multivariate LSTM forecasting models for Bitcoin realized volatility with potential applications in crypto options trading, hedging, portfolio management, and risk management

Bitcoin Realized Volatility Forecasting with GARCH and Multivariate LSTM Author: Chi Bui This Repository Repository Directory ├── README.md

Chi Bui 113 Dec 29, 2022
Spatial Temporal Graph Convolutional Networks (ST-GCN) for Skeleton-Based Action Recognition in PyTorch

Reminder ST-GCN has transferred to MMSkeleton, and keep on developing as an flexible open source toolbox for skeleton-based human understanding. You a

sijie yan 1.1k Dec 25, 2022
Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation

Unseen Object Clustering: Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation Introduction In this work, we propose a new method

NVIDIA Research Projects 132 Dec 13, 2022
Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order of magnitude using coresets and data selection.

COResets and Data Subset selection Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order

decile-team 244 Jan 09, 2023
Draw like Bob Ross using the power of Neural Networks (With PyTorch)!

Draw like Bob Ross using the power of Neural Networks! (+ Pytorch) Learning Process Visualization Getting started Install dependecies Requires python3

Kendrick Tan 116 Mar 07, 2022
OverFeat is a Convolutional Network-based image classifier and feature extractor.

OverFeat OverFeat is a Convolutional Network-based image classifier and feature extractor. OverFeat was trained on the ImageNet dataset and participat

593 Dec 08, 2022
Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER 🦌 🦒 Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEE

33 Dec 23, 2022
A Pythonic library for Nvidia Codec.

A Pythonic library for Nvidia Codec. The project is still in active development; expect breaking changes. Why another Python library for Nvidia Codec?

Zesen Qian 12 Dec 27, 2022
A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK

Pytorch-MBNet A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK Training To train a new model, please ru

46 Dec 28, 2022
A working implementation of the Categorical DQN (Distributional RL).

Categorical DQN. Implementation of the Categorical DQN as described in A distributional Perspective on Reinforcement Learning. Thanks to @tudor-berari

Florin Gogianu 98 Sep 20, 2022