Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.

Overview

DocEnTR

Description

Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on top of the vit-pytorch vision transformers library. The proposed model can be used to enhance (binarize) degraded document images, as shown in the following samples.

Degraded Images Our Binarization
1 2
1 2

Download Code

clone the repository:

git clone https://github.com/dali92002/DocEnTR
cd DocEnTr

Requirements

  • install requirements.txt

Process Data

Data Path

We gathered the DIBCO, H-DIBCO and PALM datasets and organized them in one folder. You can download it from this link. After downloading, extract the folder named DIBCOSETS and place it in your desired data path. Means: /YOUR_DATA_PATH/DIBCOSETS/

Data Splitting

Specify the data path, split size, validation and testing sets to prepare your data. In this example, we set the split size as (256 X 256), the validation set as 2016 and the testing as 2018 while running the process_dibco.py file.

python process_dibco.py --data_path /YOUR_DATA_PATH/ --split_size 256 --testing_dataset 2018 --validation_dataset 2016

Using DocEnTr

Training

For training, specify the desired settings (batch_size, patch_size, model_size, split_size and training epochs) when running the file train.py. For example, for a base model with a patch_size of (16 X 16) and a batch_size of 32 we use the following command:

python train.py --data_path /YOUR_DATA_PATH/ --batch_size 32 --vit_model_size base --vit_patch_size 16 --epochs 151 --split_size 256 --validation_dataset 2016

You will get visualization results from the validation dataset on each epoch in a folder named vis+"YOUR_EXPERIMENT_SETTINGS" (it will be created). In the previous case it will be named visbase_256_16. Also, the best weights will be saved in the folder named "weights".

Testing on a DIBCO dataset

To test the trained model on a specific DIBCO dataset (should be matched with the one specified in Section Process Data, if not, run process_dibco.py again). Download the model weights (In section Model Zoo), or use your own trained model weights. Then, run the following command. Here, I test on H-DIBCO 2018, using the Base model with 8X8 patch_size, and a batch_size of 16. The binarized images will be in the folder ./vis+"YOUR_CONFIGS_HERE"/epoch_testing/

python test.py --data_path /YOUR_DATA_PATH/ --model_weights_path  /THE_MODEL_WEIGHTS_PATH/  --batch_size 16 --vit_model_size base --vit_patch_size 8 --split_size 256 --testing_dataset 2018

Demo

To be added ... (Using our Pretrained Models To Binarize A Single Degraded Image)

Model Zoo

In this section we release the pre-trained weights for all the best DocEnTr model variants trained on DIBCO benchmarks.

Testing data Models Patch size URL PSNR
0
DIBCO 2011
DocEnTr-Base 8x8 model 20.81
DocEnTr-Large 16x16 model 20.62
1
H-DIBCO 2012
DocEnTr-Base 8x8 model 22.29
DocEnTr-Large 16x16 model 22.04
2
DIBCO 2017
DocEnTr-Base 8x8 model 19.11
DocEnTr-Large 16x16 model 18.85
3
H-DIBCO 2018
DocEnTr-Base 8x8 model 19.46
DocEnTr-Large 16x16 model 19.47

Citation

If you find this useful for your research, please cite it as follows:

@article{souibgui2022docentr,
  title={DocEnTr: An end-to-end document image enhancement transformer},
  author={ Souibgui, Mohamed Ali and Biswas, Sanket and  Jemni, Sana Khamekhem and Kessentini, Yousri and Forn{\'e}s, Alicia and Llad{\'o}s, Josep and Pal, Umapada},
  journal={arXiv preprint arXiv:2201.10252},
  year={2022}
}

Authors

Conclusion

There should be no bugs in this code, but if there is, we are sorry for that :') !!

Owner
Mohamed Ali Souibgui
PhD Student in Computer Vision
Mohamed Ali Souibgui
Codes for "Template-free Prompt Tuning for Few-shot NER".

EntLM The source codes for EntLM. Dependencies: Cuda 10.1, python 3.6.5 To install the required packages by following commands: $ pip3 install -r requ

77 Dec 27, 2022
[NeurIPS 2021] "Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems"

Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems Introduction Multi-agent control i

VITA 6 May 05, 2022
An Artificial Intelligence trying to drive a car by itself on a user created map

An Artificial Intelligence trying to drive a car by itself on a user created map

Akhil Sahukaru 17 Jan 13, 2022
Official PyTorch implementation of SyntaSpeech (IJCAI 2022)

SyntaSpeech: Syntax-Aware Generative Adversarial Text-to-Speech | | | | 中文文档 This repository is the official PyTorch implementation of our IJCAI-2022

Zhenhui YE 116 Nov 24, 2022
Time should be taken seer-iously

TimeSeers seers - (Noun) plural form of seer - A person who foretells future events by or as if by supernatural means TimeSeers is an hierarchical Bay

279 Dec 26, 2022
Code accompanying "Learning What To Do by Simulating the Past", ICLR 2021.

Learning What To Do by Simulating the Past This repository contains code that implements the Deep Reward Learning by Simulating the Past (Deep RSLP) a

Center for Human-Compatible AI 24 Aug 07, 2021
Stock-history-display - something like a easy yearly review for your stock performance

Stock History Display Available on Heroku: https://stock-history-display.herokua

LiaoJJ 1 Jan 07, 2022
Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in 3D.

ApproxMVBB Status Build UnitTests Homepage Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in

Gabriel Nützi 390 Dec 31, 2022
QuALITY: Question Answering with Long Input Texts, Yes!

QuALITY: Question Answering with Long Input Texts, Yes! Authors: Richard Yuanzhe Pang,* Alicia Parrish,* Nitish Joshi,* Nikita Nangia, Jason Phang, An

ML² AT CILVR 61 Jan 02, 2023
This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation

This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation. Yolov5 is used to detect fire and smoke and unet is used to segment fire.

7 Jan 08, 2023
Companion repository to the paper accepted at the 4th ACM SIGSPATIAL International Workshop on Advances in Resilient and Intelligent Cities

Transfer learning approach to bicycle sharing systems station location planning using OpenStreetMap Companion repository to the paper accepted at the

Politechnika Wrocławska - repozytorium dla informatyków 4 Oct 24, 2022
Repository for RNNs using TensorFlow and Keras - LSTM and GRU Implementation from Scratch - Simple Classification and Regression Problem using RNNs

RNN 01- RNN_Classification Simple RNN training for classification task of 3 signal: Sine, Square, Triangle. 02- RNN_Regression Simple RNN training for

Nahid Ebrahimian 13 Dec 13, 2022
A Python module for parallel optimization of expensive black-box functions

blackbox: A Python module for parallel optimization of expensive black-box functions What is this? A minimalistic and easy-to-use Python module that e

Paul Knysh 426 Dec 08, 2022
Code repository for the work "Multi-Domain Incremental Learning for Semantic Segmentation", accepted at WACV 2022

Multi-Domain Incremental Learning for Semantic Segmentation This is the Pytorch implementation of our work "Multi-Domain Incremental Learning for Sema

Pgxo20 24 Jan 02, 2023
Nerf pl - NeRF (Neural Radiance Fields) and NeRF in the Wild using pytorch-lightning

nerf_pl Update: an improved NSFF implementation to handle dynamic scene is open! Update: NeRF-W (NeRF in the Wild) implementation is added to nerfw br

AI葵 1.8k Dec 30, 2022
AWS documentation corpus for zero-shot open-book question answering.

aws-documentation We present the AWS documentation corpus, an open-book QA dataset, which contains 25,175 documents along with 100 matched questions a

Sia Gholami 2 Jul 07, 2022
Generic Foreground Segmentation in Images

Pixel Objectness The following repository contains pretrained model for pixel objectness. Please visit our project page for the paper and visual resul

Suyog Jain 157 Nov 21, 2022
2021搜狐校园文本匹配算法大赛 分比我们低的都是帅哥队

sohu_text_matching 2021搜狐校园文本匹配算法大赛Top2:分比我们低的都是帅哥队 本repo包含了本次大赛决赛环节提交的代码文件及答辩PPT,提交的模型文件可在百度网盘获取(链接:https://pan.baidu.com/s/1T9FtwiGFZhuC8qqwXKZSNA ,

hflserdaniel 43 Oct 01, 2022
This is a file about Unet implemented in Pytorch

Unet this is an implemetion of Unet in Pytorch and it's architecture is as follows which is the same with paper of Unet component of Unet Convolution

Dragon 1 Dec 03, 2021