Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning

Overview

Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning

Update (September 18th, 2021)

A supporting document describing the difference between transfer learning, incremental learning, domain adaptation, and the proposed incremental cross-domain adaptation approach has been uploaded in this repository.

Update (August 15th, 2021)

Blind Testing Dataset has been released.

Introduction

This repository contains an implementation of the continual learning loss function (driven via Bayesian inference) to penalize the deep classification networks for incrementally learning the diverse ranging classification tasks across various domain shifts.

CL

Installation

To run the codebase, please download and install Anaconda (also install MATLAB R2020a with deep learning, image processing and computer vision toolboxes). Afterward, please import the ‘environment.yml’ or alternatively install following packages:

  1. Python 3.7.9
  2. TensorFlow 2.1.0 (CUDA compatible GPU needed for GPU training)
  3. Keras 2.3.0 or above
  4. OpenCV 4.2
  5. Imgaug 0.2.9 or above
  6. Tqdm
  7. Pandas
  8. Pillow 8.2.0

Both Linux and Windows OS are supported.

Datasets

The datasets used in the paper can be downloaded from the following URLs:

  1. Rabbani
  2. BIOMISA
  3. Zhang
  4. Duke-I
  5. Duke-II
  6. Duke-III
  7. Blind Testing Dataset

The datasets description file is also uploaded here. Moreover, please follow the same steps as mentioned below to prepare the training and testing data. These steps are also applicable for any custom dataset. Please note that in this research, the disease severity within the scans of all the above-mentioned datasets are marked by multiple expert ophthalmologists. These annotations are also released publicly in this repository.

Dataset Preparation

  1. Download the desired data and put the training images in '…\datasets\trainK' folder (where K indicates the iteration).
  2. The directory structure is given below:
├── datasets
│   ├── test
│   │   └── test_image_1.png
│   │   └── test_image_2.png
│   │   ...
│   │   └── test_image_n.png
│   ├── train1
│   │   └── train_image_1.png
│   │   └── train_image_2.png
│   │   ...
│   │   └── train_image_m.png
│   ├── train2
│   │   └── train_image_1.png
│   │   └── train_image_2.png
│   │   ...
│   │   └── train_image_j.png
│   ...
│   ├── trainK
│   │   └── train_image_1.png
│   │   └── train_image_2.png
│   │   ...
│   │   └── train_image_o.png

Training and Testing

  1. Use ‘trainer.py’ to train the chosen model incrementally. After each iteration, the learned representations are saved in a h5 file.
  2. After training the model instances, use ‘tester.py’ to generate the classification results.
  3. Use ‘confusionMatrix.m’ to view the obtained results.

Results

The detailed results of the proposed framework on all the above-mentioned datasets are stored in the 'results.mat' file.

Citation

If you use the proposed scheme (or any part of this code in your research), please cite the following paper:

@inproceedings{BayesianIDA,
  title   = {Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning},
  author  = {Taimur Hassan and Bilal Hassan and Muhammad Usman Akram and Shahrukh Hashmi and Abdul Hakeem and Naoufel Werghi},
  note = {IEEE Transactions on Instrumentation and Measurement},
  year = {2021}
}

Contact

If you have any query, please feel free to contact us at: [email protected].

Owner
Taimur Hassan
Taimur Hassan
Unofficial implementation of "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" (https://arxiv.org/abs/2103.14030)

Swin-Transformer-Tensorflow A direct translation of the official PyTorch implementation of "Swin Transformer: Hierarchical Vision Transformer using Sh

52 Dec 29, 2022
Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks

MGANs Training & Testing code (torch), pre-trained models and supplementary materials for "Precomputed Real-Time Texture Synthesis with Markovian Gene

290 Nov 15, 2022
Compute FID scores with PyTorch.

FID score for PyTorch This is a port of the official implementation of Fréchet Inception Distance to PyTorch. See https://github.com/bioinf-jku/TTUR f

2.1k Jan 06, 2023
Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker

Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker This is a full project of image segmentation using the model built with

Htin Aung Lu 1 Jan 04, 2022
Api's bulid in Flask perfom to manage Todo Task.

Citymall-task Api's bulid in Flask perfom to manage Todo Task. Installation Requrements : Python: 3.10.0 MongoDB create .env file with variables DB_UR

Aisha Tayyaba 1 Dec 17, 2021
Implementation of H-UCRL Algorithm

Implementation of H-UCRL Algorithm This repository is an implementation of the H-UCRL algorithm introduced in Curi, S., Berkenkamp, F., & Krause, A. (

Sebastian Curi 25 May 20, 2022
An implementation of the [Hierarchical (Sig-Wasserstein) GAN] algorithm for large dimensional Time Series Generation

Hierarchical GAN for large dimensional financial market data Implementation This repository is an implementation of the [Hierarchical (Sig-Wasserstein

11 Nov 29, 2022
M3DSSD: Monocular 3D Single Stage Object Detector

M3DSSD: Monocular 3D Single Stage Object Detector Setup pytorch 0.4.1 Preparation Download the full KITTI detection dataset. Then place a softlink (or

mumianyuxin 64 Dec 27, 2022
Anti-UAV base on PaddleDetection

Paddle-Anti-UAV Anti-UAV base on PaddleDetection Background UAVs are very popular and we can see them in many public spaces, such as parks and playgro

Qingzhong Wang 2 Apr 20, 2022
StarGAN v2 - Official PyTorch Implementation (CVPR 2020)

StarGAN v2 - Official PyTorch Implementation StarGAN v2: Diverse Image Synthesis for Multiple Domains Yunjey Choi*, Youngjung Uh*, Jaejun Yoo*, Jung-W

Clova AI Research 3.1k Jan 09, 2023
Riemannian Convex Potential Maps

Modeling distributions on Riemannian manifolds is a crucial component in understanding non-Euclidean data that arises, e.g., in physics and geology. The budding approaches in this space are limited b

Facebook Research 61 Nov 28, 2022
Code for the paper "SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness" (NeurIPS 2021)

SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness (NeurIPS2021) This repository contains code for the paper "Smo

Jongheon Jeong 17 Dec 27, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

538 Jan 09, 2023
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP Russian Diffusio

AI Forever 232 Jan 04, 2023
Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020

Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020 BibTeX @INPROCEEDINGS{punnappurath2020modeling, author={Abhi

Abhijith Punnappurath 22 Oct 01, 2022
Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data recorded in NumPy array

shindo.py Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data stored in NumPy array Introduction Japa

RR_Inyo 3 Sep 23, 2022
Implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification

CrossViT : Cross-Attention Multi-Scale Vision Transformer for Image Classification This is an unofficial PyTorch implementation of CrossViT: Cross-Att

Rishikesh (ऋषिकेश) 103 Nov 25, 2022
An efficient implementation of GPNN

Efficient-GPNN An efficient implementation of GPNN as depicted in "Drop the GAN: In Defense of Patches Nearest Neighbors as Single Image Generative Mo

7 Apr 16, 2022
Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition"

Adversarial Reciprocal Points Learning for Open Set Recognition Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Se

Guangyao Chen 78 Dec 28, 2022
A Player for Kanye West's Stem Player. Sort of an emulator.

Stem Player Player Stem Player Player Usage Download the latest release here Optional: install ffmpeg, instructions here NOTE: DOES NOT ENABLE DOWNLOA

119 Dec 28, 2022