Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning

Overview

Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning

Update (September 18th, 2021)

A supporting document describing the difference between transfer learning, incremental learning, domain adaptation, and the proposed incremental cross-domain adaptation approach has been uploaded in this repository.

Update (August 15th, 2021)

Blind Testing Dataset has been released.

Introduction

This repository contains an implementation of the continual learning loss function (driven via Bayesian inference) to penalize the deep classification networks for incrementally learning the diverse ranging classification tasks across various domain shifts.

CL

Installation

To run the codebase, please download and install Anaconda (also install MATLAB R2020a with deep learning, image processing and computer vision toolboxes). Afterward, please import the ‘environment.yml’ or alternatively install following packages:

  1. Python 3.7.9
  2. TensorFlow 2.1.0 (CUDA compatible GPU needed for GPU training)
  3. Keras 2.3.0 or above
  4. OpenCV 4.2
  5. Imgaug 0.2.9 or above
  6. Tqdm
  7. Pandas
  8. Pillow 8.2.0

Both Linux and Windows OS are supported.

Datasets

The datasets used in the paper can be downloaded from the following URLs:

  1. Rabbani
  2. BIOMISA
  3. Zhang
  4. Duke-I
  5. Duke-II
  6. Duke-III
  7. Blind Testing Dataset

The datasets description file is also uploaded here. Moreover, please follow the same steps as mentioned below to prepare the training and testing data. These steps are also applicable for any custom dataset. Please note that in this research, the disease severity within the scans of all the above-mentioned datasets are marked by multiple expert ophthalmologists. These annotations are also released publicly in this repository.

Dataset Preparation

  1. Download the desired data and put the training images in '…\datasets\trainK' folder (where K indicates the iteration).
  2. The directory structure is given below:
├── datasets
│   ├── test
│   │   └── test_image_1.png
│   │   └── test_image_2.png
│   │   ...
│   │   └── test_image_n.png
│   ├── train1
│   │   └── train_image_1.png
│   │   └── train_image_2.png
│   │   ...
│   │   └── train_image_m.png
│   ├── train2
│   │   └── train_image_1.png
│   │   └── train_image_2.png
│   │   ...
│   │   └── train_image_j.png
│   ...
│   ├── trainK
│   │   └── train_image_1.png
│   │   └── train_image_2.png
│   │   ...
│   │   └── train_image_o.png

Training and Testing

  1. Use ‘trainer.py’ to train the chosen model incrementally. After each iteration, the learned representations are saved in a h5 file.
  2. After training the model instances, use ‘tester.py’ to generate the classification results.
  3. Use ‘confusionMatrix.m’ to view the obtained results.

Results

The detailed results of the proposed framework on all the above-mentioned datasets are stored in the 'results.mat' file.

Citation

If you use the proposed scheme (or any part of this code in your research), please cite the following paper:

@inproceedings{BayesianIDA,
  title   = {Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning},
  author  = {Taimur Hassan and Bilal Hassan and Muhammad Usman Akram and Shahrukh Hashmi and Abdul Hakeem and Naoufel Werghi},
  note = {IEEE Transactions on Instrumentation and Measurement},
  year = {2021}
}

Contact

If you have any query, please feel free to contact us at: [email protected].

Owner
Taimur Hassan
Taimur Hassan
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods

Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods Introduction Graph Neural Networks (GNNs) have demonstrated

37 Dec 15, 2022
Official repository for ABC-GAN

ABC-GAN The work represented in this repository is the result of a 14 week semesterthesis on photo-realistic image generation using generative adversa

IgorSusmelj 10 Jun 23, 2022
Interactive Terraform visualization. State and configuration explorer.

Rover - Terraform Visualizer Rover is a Terraform visualizer. In order to do this, Rover: generates a plan file and parses the configuration in the ro

Tu Nguyen 2.3k Jan 07, 2023
The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer"

Shuffle Transformer The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer" Introduction Very recently, window-

87 Nov 29, 2022
mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms.

mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms. It provides easily interchangeable modeling and planning components, and a set of utility function

Facebook Research 724 Jan 04, 2023
GenshinMapAutoMarkTools - Tools To add/delete/refresh resources mark in Genshin Impact Map

使用说明 适配 windows7以上 64位 原神1920x1080窗口(其他分辨率后续适配) 待更新渊下宫 English version is to be

Zero_Circle 209 Dec 28, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
This is the code for the paper "Contrastive Clustering" (AAAI 2021)

Contrastive Clustering (CC) This is the code for the paper "Contrastive Clustering" (AAAI 2021) Dependency python=3.7 pytorch=1.6.0 torchvision=0.8

Yunfan Li 210 Dec 30, 2022
Transformers are Graph Neural Networks!

🚀 Gated Graph Transformers Gated Graph Transformers for graph-level property prediction, i.e. graph classification and regression. Associated article

Chaitanya Joshi 46 Jun 30, 2022
Binary Stochastic Neurons in PyTorch

Binary Stochastic Neurons in PyTorch http://r2rt.com/binary-stochastic-neurons-in-tensorflow.html https://github.com/pytorch/examples/tree/master/mnis

Onur Kaplan 54 Nov 21, 2022
Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS 2021), and the code to generate simulation results.

Scalable Intervention Target Estimation in Linear Models Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS

0 Oct 25, 2021
[CVPR 2021] Released code for Counterfactual Zero-Shot and Open-Set Visual Recognition

Counterfactual Zero-Shot and Open-Set Visual Recognition This project provides implementations for our CVPR 2021 paper Counterfactual Zero-S

144 Dec 24, 2022
Adversarial Autoencoders

Adversarial Autoencoders (with Pytorch) Dependencies argparse time torch torchvision numpy itertools matplotlib Create Datasets python create_datasets

Felipe Ducau 188 Jan 01, 2023
Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Bae, Gwangbin 95 Jan 04, 2023
Housing Price Prediction

This project aim was to predict the price of houses in the Boston area during the great financial crisis through regression, as well as classify houses into different quality categories according to

Florian Klement 1 Jan 27, 2022
Boost learning for GNNs from the graph structure under challenging heterophily settings. (NeurIPS'20)

Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu,

GEMS Lab: Graph Exploration & Mining at Scale, University of Michigan 70 Dec 18, 2022
Official Code for "Non-deep Networks"

Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Overview: Depth is the hallmark of DNNs. But more depth m

Ankit Goyal 567 Dec 12, 2022
The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter

FAPIS The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter Introduction This repo is primari

Khoi Nguyen 8 Dec 11, 2022
Artificial Intelligence playing minesweeper 🤖

AI playing Minesweeper ✨ Minesweeper is a single-player puzzle video game. The objective of the game is to clear a rectangular board containing hidden

Vaibhaw 8 Oct 17, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022