Agile SVG maker for python

Related tags

Deep LearningASVG
Overview

Agile SVG Maker

Need to draw hundreds of frames for a GIF? Need to change the style of all pictures in a PPT? Need to draw similar images with different parameters? Try ASVG!

Under construction, not so agile yet...

Basically aimed at academic illustrations.

Simple Example

from ASVG import *

# A 500x300 canvas
a = Axis((500, 300)) 

# Draw a rectangle on a, at level 1, from (0,0) to (200,100)
# With (5,5) round corner, fill with red color.
rect(a, 1, 0, 0, 200, 100, 5, 5, fill='red')

# Draw a circle on a, at level 3
# Centered (50,50) with 50 radius, fill with blue color.
circle(a, 3, 50, 50, 50, fill='blue')

# Draw this picture to example.svg
draw(a, "example.svg")

Parameterized Sub-image

def labeledRect(
        level: int,
        width: float,
        height: float,
        s: Union[str, TextRepresent],
        font_size: float,
        textShift: Tuple[float, float] = (0, 0),
        font: str = "Arial",
        rx: float = 0,
        ry: float = 0,
        margin: float = 5,
        attrib: Attrib = Attrib(),
        rectAttrib: Attrib = Attrib(),
        textAttrib: Attrib = Attrib(),
        **kwargs):
    e = ComposedElement((width + 2 * margin, height + 2 * margin),
                        level, attrib + kwargs)
    rect(e, 0, margin, margin, width, height, rx, ry, attrib=rectAttrib)

    textX = width / 2 + textShift[0] + margin
    textY = height / 2 + textShift[1] + (font_size / 2) + margin
    text(e, 1, s, textX, textY, font_size, font, attrib=textAttrib)
    return e

a = Axis((300,200))
a.addElement(labeledRect(...))

Nested Canvas

Canvas and Axis

Create a canvas axis with Axis(size, viewport) size=(width, height) is the physical size of the canvas in pixels. viewport=(x, y) is the logical size of the axis, by default its the same of the physical size.

# A 1600x900 canvas, axis range [0,1600)x[0,900)
a = Axis((1600, 900))

# A 1600x900 canva, with normalized axis range[0,1),[0,1)
b = Axis((1600, 900), (1.0, 1.0))

ComposedElement

A composed element is a sub-image.

ComposedElement(size, level, attrib) size=(width, height): the size of the axis of this element. level: the higher the level is, the fronter the composed element is. attrib: the common attributes of this element

Add a composed element into the big canvas:axis.addElement(element, shift) shift=(x,y) is the displacement of the element in the outer axis.

A composed element can have other composed elements as sub-pictures: element.addElement(subElement, shift)

Basic Elements

The basic element comes from SVG. Basicly, every element needs a axis and a level argument. axis can be a Axis or ComposedElement. The bigger the level is, the fronter the element is. level is only comparable when two elements are under the same axis.

# Rectangle
rect(
    axis: Union[core.Axis, core.ComposedElement],
    level: int,
    x: float, # top left
    y: float,
    width: float,
    height: float,
    rx: float = 0.0, # round corner radius
    ry: float = 0.0,
    attrib: core.Attrib = core.Attrib(),
    **kwargs
)
# Circle
circle(
    axis: Union[core.Axis, core.ComposedElement],
    level: int,
    cx: float, # center
    cy: float,
    r: float, # radius
    attrib: core.Attrib = core.Attrib(),
    **kwargs
)
# Ellipse
ellipse(
    axis: Union[core.Axis, core.ComposedElement],
    level: int,
    cx: float, # center
    cy: float,
    rx: float, # radius
    ry: float,
    attrib: core.Attrib = core.Attrib(),
    **kwargs
)
# Straight line
line(
    axis: Union[core.Axis, core.ComposedElement],
    level: int,
    x1: float, # Start
    y1: float,
    x2: float, # End
    y2: float,
    attrib: core.Attrib = core.Attrib(),
    **kwargs
)
# Polyline
polyline(
    axis: Union[core.Axis, core.ComposedElement],
    level: int,
    points: List[Tuple[float, float]],
    attrib: core.Attrib = core.Attrib(),
    **kwargs
)
# Polygon
polygon(
    axis: Union[core.Axis, core.ComposedElement],
    level: int,
    points: List[Tuple[float, float]],
    attrib: core.Attrib = core.Attrib(),
    **kwargs
)
# Path
path(
    axis: Union[core.Axis, core.ComposedElement],
    level: int,
    d: PathD,
    attrib: core.Attrib = core.Attrib(),
    **kwargs
)

PathD is a sequence of path descriptions, the actions is like SVG's path element. View Path tutorial We use ?To() for captial letters and ?For() for lower-case letters. close() and open() is for closing or opening the path. Example:

d = PathD()
d.moveTo(100,100)
d.hlineFor(90)
d.close()
# Equivilent: d = PathD(["M 80 80", "h 90",  "Z"])

path(a, 0, d)

Text

text(
    axis: Union[core.Axis, core.ComposedElement],
    level: int,
    s: Union[str, TextRepresent],
    x: float,
    y: float,
    fontSize: int,
    font: str = "Arial",
    anchor: str = "middle",
    attrib: core.Attrib = core.Attrib(),
    **kwargs
)

anchor is where (x,y) is in the text. Can be either start, middle or end.

TextRepresent means formatted text. Normal string with \n in it will be converted into multilines. You can use TextSpan to add some attributes to a span of text.

Examples:

text(
    a, 10,
    "Hello\n???" + \
    TextSpan("!!!\n", fill='#00ffff', font_size=25) +\
    "???\nabcdef",
    30, 30, 20, anchor="start")

Arrow

# Straight arrow
arrow(
    axis: Union[core.Axis, core.ComposedElement],
    level: int,
    x: float, # Position of the tip
    y: float,
    fromX: float, # Position of the other end
    fromY: float,
    tipSize: float = 10.0,
    tipAngle: float = 60.0,
    tipFilled: bool = True,
    **kwargs
)
# Polyline arrow
polyArrow(
    axis: Union[core.Axis, core.ComposedElement],
    level: int,
    points: List[Tuple[float, float]],
    tipSize: float = 10.0,
    tipAngle: float = 60.0,
    tipFilled: bool = True,
    **kwargs
)

Attributes

Attributes is for customizing the style of the elements.

myStyle = Attrib(
    fill = "#1bcd20",
    stroke = "black",
    stroke_width = "1pt"
)

alertStype = myStyle.copy()
alertStype.fill = "#ff0000"

rect(..., attrib=myStyle)
circle(..., attrib=alertStyle)

The name of the attribute are the same as in SVG elements, except use underline _ instead of dash -

Attributs of ComposedElement applies on <group> element.

For convinent, you can directly write some attributes in **kwargs.

rect(..., fill="red")

# Equivilient
rect(..., attrib=Attrib(fill="red))
Owner
SemiWaker
A student in Peking University Department of Electronic Engineering and Computer Science, Major in Artificial Intelligence.
SemiWaker
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
NP DRAW paper released code

NP-DRAW: A Non-Parametric Structured Latent Variable Model for Image Generation This repo contains the official implementation for the NP-DRAW paper.

ZENG Xiaohui 22 Mar 13, 2022
Sub-tomogram-Detection - Deep learning based model for Cyro ET Sub-tomogram-Detection

Deep learning based model for Cyro ET Sub-tomogram-Detection High degree of stru

Siddhant Kumar 2 Feb 04, 2022
An Unsupervised Detection Framework for Chinese Jargons in the Darknet

An Unsupervised Detection Framework for Chinese Jargons in the Darknet This repo is the Python 3 implementation of 《An Unsupervised Detection Framewor

7 Nov 08, 2022
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish

Zhiqin Chen 72 Dec 31, 2022
Semantic Scholar's Author Disambiguation Algorithm & Evaluation Suite

S2AND This repository provides access to the S2AND dataset and S2AND reference model described in the paper S2AND: A Benchmark and Evaluation System f

AI2 54 Nov 28, 2022
SLAMP: Stochastic Latent Appearance and Motion Prediction

SLAMP: Stochastic Latent Appearance and Motion Prediction Official implementation of the paper SLAMP: Stochastic Latent Appearance and Motion Predicti

Kaan Akan 34 Dec 08, 2022
Generative Autoregressive, Normalized Flows, VAEs, Score-based models (GANVAS)

GANVAS-models This is an implementation of various generative models. It contains implementations of the following: Autoregressive Models: PixelCNN, G

MRSAIL (Mini Robotics, Software & AI Lab) 6 Nov 26, 2022
RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering

RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering Authors: Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou and

Salesforce 72 Dec 05, 2022
a spacial-temporal pattern detection system for home automation

Argos a spacial-temporal pattern detection system for home automation. Based on OpenCV and Tensorflow, can run on raspberry pi and notify HomeAssistan

Angad Singh 133 Jan 05, 2023
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
PyTorch Implementation of the paper Learning to Reweight Examples for Robust Deep Learning

Learning to Reweight Examples for Robust Deep Learning Unofficial PyTorch implementation of Learning to Reweight Examples for Robust Deep Learning. Th

Daniel Stanley Tan 325 Dec 28, 2022
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
Code for our CVPR 2022 Paper "GEN-VLKT: Simplify Association and Enhance Interaction Understanding for HOI Detection"

GEN-VLKT Code for our CVPR 2022 paper "GEN-VLKT: Simplify Association and Enhance Interaction Understanding for HOI Detection". Contributed by Yue Lia

Yue Liao 47 Dec 04, 2022
Code for Robust Contrastive Learning against Noisy Views

Robust Contrastive Learning against Noisy Views This repository provides a PyTorch implementation of the Robust InfoNCE loss proposed in paper Robust

Ching-Yao Chuang 53 Jan 08, 2023
Tensor-Based Quantum Machine Learning

TensorLy_Quantum TensorLy-Quantum is a Python library for Tensor-Based Quantum Machine Learning that builds on top of TensorLy and PyTorch. Website: h

TensorLy 85 Dec 03, 2022
CT-Net: Channel Tensorization Network for Video Classification

[ICLR2021] CT-Net: Channel Tensorization Network for Video Classification @inproceedings{ li2021ctnet, title={{\{}CT{\}}-Net: Channel Tensorization Ne

33 Nov 15, 2022
HuSpaCy: industrial-strength Hungarian natural language processing

HuSpaCy: Industrial-strength Hungarian NLP HuSpaCy is a spaCy model and a library providing industrial-strength Hungarian language processing faciliti

HuSpaCy 120 Dec 14, 2022
African language Speech Recognition - Speech-to-Text

Swahili-Speech-To-Text Table of Contents Swahili-Speech-To-Text Overview Scenario Approach Project Structure data: models: notebooks: scripts tests: l

2 Jan 05, 2023
This repository contains the files for running the Patchify GUI.

Repository Name Train-Test-Validation-Dataset-Generation App Name Patchify Description This app is designed for crop images and creating smal

Salar Ghaffarian 9 Feb 15, 2022