RDA: Robust Domain Adaptation via Fourier Adversarial Attacking

Related tags

Deep LearningRDA
Overview

RDA: Robust Domain Adaptation via Fourier Adversarial Attacking

Updates

Paper

RDA: Robust Domain Adaptation via Fourier Adversarial Attacking
Jiaxing Huang, Dayan Guan, Xiao Aoran, Shijian Lu
School of Computer Science Engineering, Nanyang Technological University, Singapore
International Conference on Computer Vision, 2021.

If you find this code/paper useful for your research, please cite our paper:

@article{huang2021rda,
  title={RDA: Robust Domain Adaptation via Fourier Adversarial Attacking},
  author={Huang, Jiaxing and Guan, Dayan and Xiao, Aoran and Lu, Shijian},
  journal={arXiv preprint arXiv:2106.02874},
  year={2021}
}

Abstract

Unsupervised domain adaptation (UDA) involves a supervised loss in a labeled source domain and an unsupervised loss in an unlabeled target domain, which often faces more severe overfitting (than classical supervised learning) as the supervised source loss has clear domain gap and the unsupervised target loss is often noisy due to the lack of annotations. This paper presents RDA, a robust domain adaptation technique that introduces adversarial attacking to mitigate overfitting in UDA. We achieve robust domain adaptation by a novel Fourier adversarial attacking (FAA) method that allows large magnitude of perturbation noises but has minimal modification of image semantics, the former is critical to the effectiveness of its generated adversarial samples due to the existence of domain gaps. Specifically, FAA decomposes images into multiple frequency components (FCs) and generates adversarial samples by just perturbating certain FCs that capture little semantic information. With FAA-generated samples, the training can continue the random walk and drift into an area with a flat loss landscape, leading to more robust domain adaptation. Extensive experiments over multiple domain adaptation tasks show that RDA can work with different computer vision tasks with superior performance.

Installation

  1. Conda enviroment:
conda create -n rda python=3.6
conda activate rda
conda install -c menpo opencv
pip install torch==1.0.0 torchvision==0.2.1
  1. Clone the ADVENT:
git clone https://github.com/valeoai/ADVENT.git
pip install -e ./ADVENT
  1. Clone the CRST:
git clone https://github.com/yzou2/CRST.git
pip install packaging h5py
  1. Clone the repo:
https://github.com/jxhuang0508/RDA.git
pip install -e ./RDA
cp RDA/crst/*py CRST
cp RDA/crst/deeplab/*py CRST/deeplab

Prepare Dataset

  • GTA5: Please follow the instructions here to download images and semantic segmentation annotations. The GTA5 dataset directory should have this basic structure:
RDA/data/GTA5/                               % GTA dataset root
RDA/data/GTA5/images/                        % GTA images
RDA/data/GTA5/labels/                        % Semantic segmentation labels
...
  • Cityscapes: Please follow the instructions in Cityscape to download the images and validation ground-truths. The Cityscapes dataset directory should have this basic structure:
RDA/data/Cityscapes/                         % Cityscapes dataset root
RDA/data/Cityscapes/leftImg8bit              % Cityscapes images
RDA/data/Cityscapes/leftImg8bit/val
RDA/data/Cityscapes/gtFine                   % Semantic segmentation labels
RDA/data/Cityscapes/gtFine/val
...

Pre-trained models

Pre-trained models can be downloaded here and put in RDA/pretrained_models

Evaluation

To evaluate RDA_FAA_T:

cd RDA/CRST
python evaluate_advent.py --test-flipping --data-dir ../RDA/data/Cityscapes --restore-from ../RDA/pretrained_models/model_FAA_T.pth --save ../RDA/experiments/GTA2Cityscapes_RDA

To evaluate RDA_FAA_S_T:

cd RDA/CRST
python evaluate_advent.py --test-flipping --data-dir ../RDA/data/Cityscapes --restore-from ../RDA/pretrained_models/model_FAA_S_T.pth.pth --save ../RDA/experiments/GTA2Cityscapes_RDA

Training

To train RDA_FAA_T:

cd RDA/rda/scripts
python train.py --cfg configs/RDA.yml

To test RDA_FAA_T:

cd RDA/CRST
./test_best.sh

Acknowledgements

This codebase is heavily borrowed from ADVENT and CRST.

Contact

If you have any questions, please contact: [email protected]

You might also like...
Semi-supervised Domain Adaptation via Minimax Entropy
Semi-supervised Domain Adaptation via Minimax Entropy

Semi-supervised Domain Adaptation via Minimax Entropy (ICCV 2019) Install pip install -r requirements.txt The code is written for Pytorch 0.4.0, but s

Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation
Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation

DynaBOA Code repositoty for the paper: Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation Shanyan Guan, Jingwei Xu, Michell

RoMA: Robust Model Adaptation for Offline Model-based Optimization

RoMA: Robust Model Adaptation for Offline Model-based Optimization Implementation of RoMA: Robust Model Adaptation for Offline Model-based Optimizatio

Progressive Domain Adaptation for Object Detection
Progressive Domain Adaptation for Object Detection

Progressive Domain Adaptation for Object Detection Implementation of our paper Progressive Domain Adaptation for Object Detection, based on pytorch-fa

Code release for
Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021)

Transferable Semantic Augmentation for Domain Adaptation Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021) Paper

Code to reproduce the experiments in the paper
Code to reproduce the experiments in the paper "Transformer Based Multi-Source Domain Adaptation" (EMNLP 2020)

Transformer Based Multi-Source Domain Adaptation Dustin Wright and Isabelle Augenstein To appear in EMNLP 2020. Read the preprint: https://arxiv.org/a

PyTorch code for the paper
PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021)

PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021) This repo presents PyTorch implementation of M

Self-Supervised Learning for Domain Adaptation on Point-Clouds
Self-Supervised Learning for Domain Adaptation on Point-Clouds

Self-Supervised Learning for Domain Adaptation on Point-Clouds Introduction Self-supervised learning (SSL) allows to learn useful representations from

code for our paper "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer"

SHOT++ Code for our TPAMI submission "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer" that is ext

Comments
  • About 3D image

    About 3D image

    Hi jxhuang0508! Recently I am trying to reimplement your idea for 3D image situation. However, the results isn't well. Do you have any suggestion during training FAA module or something we should be careful when we expand to the 3D problem?

    Another question, I saw your code and observed that you only take "one batch" data from target domain for FAA's reference, is that correct?

    And about inference phase, do we still need to process FAA module? Thanks!

    opened by adchentc 0
BboxToolkit is a tiny library of special bounding boxes.

BboxToolkit is a light codebase collecting some practical functions for the special-shape detection, such as oriented detection

jbwang1997 73 Jan 01, 2023
Official implementation of CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21

CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21 For more information, check out the paper on [arXiv]. Training with different

Sunghwan Hong 120 Jan 04, 2023
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 08, 2023
Finding all things on-prem Microsoft for password spraying and enumeration.

msprobe About Installing Usage Examples Coming Soon Acknowledgements About Finding all things on-prem Microsoft for password spraying and enumeration.

205 Jan 09, 2023
Group Fisher Pruning for Practical Network Compression(ICML2021)

Group Fisher Pruning for Practical Network Compression (ICML2021) By Liyang Liu*, Shilong Zhang*, Zhanghui Kuang, Jing-Hao Xue, Aojun Zhou, Xinjiang W

Shilong Zhang 129 Dec 13, 2022
Mememoji - A facial expression classification system that recognizes 6 basic emotions: happy, sad, surprise, fear, anger and neutral.

a project built with deep convolutional neural network and ❤️ Table of Contents Motivation The Database The Model 3.1 Input Layer 3.2 Convolutional La

Jostine Ho 761 Dec 05, 2022
This repository contains the map content ontology used in narrative cartography

Narrative-cartography-ontology This repository contains the map content ontology used in narrative cartography, which is associated with a submission

Weiming Huang 0 Oct 31, 2021
M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images

M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images This repo is the official implementation of paper "M2MRF: Man

12 Dec 14, 2022
Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

53 Nov 22, 2022
Tools for investing in Python

InvestOps Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction This is a Python package with simple and effective

24 Nov 26, 2022
"Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback"

This is code repo for our EMNLP 2017 paper "Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback", which implements the A2C algorithm on top of a neural encoder-

Khanh Nguyen 131 Oct 21, 2022
Implementation of Auto-Conditioned Recurrent Networks for Extended Complex Human Motion Synthesis

acLSTM_motion This folder contains an implementation of acRNN for the CMU motion database written in Pytorch. See the following links for more backgro

Yi_Zhou 61 Sep 07, 2022
In generative deep geometry learning, we often get many obj files remain to be rendered

a python prompt cli script for blender batch render In deep generative geometry learning, we always get many .obj files to be rendered. Our rendered i

Tian-yi Liang 1 Mar 20, 2022
Official Pytorch implementation of 'GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network' (NeurIPS 2020)

Official implementation of GOCor This is the official implementation of our paper : GOCor: Bringing Globally Optimized Correspondence Volumes into You

Prune Truong 71 Nov 18, 2022
BuildingNet: Learning to Label 3D Buildings

BuildingNet This is the implementation of the BuildingNet architecture described in this paper: Paper: BuildingNet: Learning to Label 3D Buildings Arx

16 Nov 07, 2022
[CVPR'21] Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration

Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration This repository contains the implementation of our paper Locally Aware Pi

sfwang 70 Dec 19, 2022
Implementation of Wasserstein adversarial attacks.

Stronger and Faster Wasserstein Adversarial Attacks Code for Stronger and Faster Wasserstein Adversarial Attacks, appeared in ICML 2020. This reposito

21 Oct 06, 2022
TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning

TransZero++ This repository contains the testing code for the paper "TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning" submitted

Shiming Chen 6 Aug 16, 2022
🐾 Semantic segmentation of paws from cute pet images (PyTorch)

🐾 paw-segmentation 🐾 Semantic segmentation of paws from cute pet images 🐾 Semantic segmentation of paws from cute pet images (PyTorch) 🐾 Paw Segme

Zabir Al Nazi Nabil 3 Feb 01, 2022
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Rishikesh (ऋषिकेश) 31 Dec 08, 2022