FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

Overview

FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

This repository contains the code (in PyTorch) for the "FADNet++" paper.

Contents

  1. Introduction
  2. Usage
  3. Results
  4. Acknowledgement
  5. Contacts

Introduction

We propose an efficient and accurate deep network for disparity estimation named FADNet with three main features:

  • It exploits efficient 2D based correlation layers with stacked blocks to preserve fast computation.
  • It combines the residual structures to make the deeper model easier to learn.
  • It contains multi-scale predictions so as to exploit a multi-scale weight scheduling training technique to improve the accuracy.

Usage

Dependencies

Package Installation

  • Execute "sh compile.sh" to compile libraries needed by GANet.
  • Enter "layers_package" and execute "sh install.sh" to install customized layers, including Channel Normalization layer and Resample layer.

We also release the docker version of this project, which has been configured completely and can be used directly. Please refer to this website for the image.

Usage of Scene Flow dataset
Download RGB cleanpass images and its disparity for three subset: FlyingThings3D, Driving, and Monkaa. Organize them as follows:
- FlyingThings3D_release/frames_cleanpass
- FlyingThings3D_release/disparity
- driving_release/frames_cleanpass
- driving_release/disparity
- monkaa_release/frames_cleanpass
- monkaa_release/disparity
Put them in the data/ folder (or soft link). The *train.sh* defaultly locates the data root path as data/.

Train

We use template scripts to configure the training task, which are stored in exp_configs. One sample "fadnet.conf" is as follows:

net=fadnet
loss=loss_configs/fadnet_sceneflow.json
outf_model=models/${net}-sceneflow
logf=logs/${net}-sceneflow.log

lr=1e-4
devices=0,1,2,3
dataset=sceneflow
trainlist=lists/SceneFlow.list
vallist=lists/FlyingThings3D_release_TEST.list
startR=0
startE=0
batchSize=16
maxdisp=-1
model=none
#model=fadnet_sceneflow.pth
Parameter Description Options
net network architecture name dispnets, dispnetc, dispnetcss, fadnet, psmnet, ganet
loss loss weight scheduling configuration file depends on the training scheme
outf_model folder name to store the model files \
logf log file name \
lr initial learning rate \
devices GPU device IDs to use depends on the hardware system
dataset dataset name to train sceneflow
train(val)list sample lists for training/validation \
startR the round index to start training (for restarting training from the checkpoint) \
startE the epoch index to start training (for restarting training from the checkpoint) \
batchSize the number of samples per batch \
maxdisp the maximum disparity that the model tries to predict \
model the model file path of the checkpoint \

We have integrated PSMNet and GANet for comparison. The sample configuration files are also given.

To start training, use the following command, dnn=CONFIG_FILE sh train.sh, such as:

dnn=fadnet sh train.sh

You do not need the suffix for CONFIG_FILE.

Evaluation

We have two modes for performance evaluation, test and detect, respectively. test requires that the testing samples should have ground truth of disparity and then reports the average End-point-error (EPE). detect does not require any ground truth for EPE computation. However, detect stores the disparity maps for each sample in the given list.

For the test mode, one can revise test.sh and run sh test.sh. The contents of test.sh are as follows:

net=fadnet
maxdisp=-1
dataset=sceneflow
trainlist=lists/SceneFlow.list
vallist=lists/FlyingThings3D_release_TEST.list

loss=loss_configs/test.json
outf_model=models/test/
logf=logs/${net}_test_on_${dataset}.log

lr=1e-4
devices=0,1,2,3
startR=0
startE=0
batchSize=8
model=models/fadnet.pth
python main.py --cuda --net $net --loss $loss --lr $lr \
               --outf $outf_model --logFile $logf \
               --devices $devices --batch_size $batchSize \
               --trainlist $trainlist --vallist $vallist \
               --dataset $dataset --maxdisp $maxdisp \
               --startRound $startR --startEpoch $startE \
               --model $model 

Most of the parameters in test.sh are similar to training. However, you can just ignore parameters, including trainlist, loss, outf_model, since they are not used in the test mode.

For the detect mode, one can revise detect.sh and run sh detect.sh. The contents of detect.sh are as follows:

net=fadnet
dataset=sceneflow

model=models/fadnet.pth
outf=detect_results/${net}-${dataset}/

filelist=lists/FlyingThings3D_release_TEST.list
filepath=data

CUDA_VISIBLE_DEVICES=0 python detecter.py --model $model --rp $outf --filelist $filelist --filepath $filepath --devices 0 --net ${net} 

You can revise the value of outf to change the folder that stores the predicted disparity maps.

Finetuning on KITTI datasets and result submission

We re-use the codes in PSMNet to finetune the pretrained models on KITTI datasets and generate disparity maps for submission. Use finetune.sh and submission.sh to do them respectively.

Pretrained Model

Update: 2020/2/6 We released the pre-trained Scene Flow model.

KITTI 2015 Scene Flow KITTI 2012
/ Google Drive /

Results

Results on Scene Flow dataset

Model EPE GPU Memory during inference (GB) Runtime (ms) on Tesla V100
FADNet 0.83 3.87 48.1
DispNetC 1.68 1.62 18.7
PSMNet 1.09 13.99 399.3
GANet 0.84 29.1 2251.1

Citation

If you find the code and paper is useful in your work, please cite our conference paper

@inproceedings{wang2020fadnet,
  title={{FADNet}: A Fast and Accurate Network for Disparity Estimation},
  author={Wang, Qiang and Shi, Shaohuai and Zheng, Shizhen and Zhao, Kaiyong and Chu, Xiaowen},
  booktitle={2020 {IEEE} International Conference on Robotics and Automation ({ICRA} 2020)},
  pages={101--107},
  year={2020}
}

Acknowledgement

We acknowledge the following repositories and papers since our project has used some codes of them.

Contacts

[email protected]

Any discussions or concerns are welcomed!

Owner
HKBU High Performance Machine Learning Lab
HKBU High Performance Machine Learning Lab
NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.

NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.

880 Jan 07, 2023
AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

Adelaide Intelligent Machines (AIM) Group 3k Jan 02, 2023
Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN

Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN Introduction Image super-resolution (SR) is the process of recovering high-resoluti

8 Apr 15, 2022
KoCLIP: Korean port of OpenAI CLIP, in Flax

KoCLIP This repository contains code for KoCLIP, a Korean port of OpenAI's CLIP. This project was conducted as part of Hugging Face's Flax/JAX communi

Jake Tae 100 Jan 02, 2023
Deep Networks with Recurrent Layer Aggregation

RLA-Net: Recurrent Layer Aggregation Recurrence along Depth: Deep Networks with Recurrent Layer Aggregation This is an implementation of RLA-Net (acce

Joy Fang 21 Aug 16, 2022
Source code for GNN-LSPE (Graph Neural Networks with Learnable Structural and Positional Representations)

Graph Neural Networks with Learnable Structural and Positional Representations Source code for the paper "Graph Neural Networks with Learnable Structu

Vijay Prakash Dwivedi 180 Dec 22, 2022
PyTorch-Geometric Implementation of MarkovGNN: Graph Neural Networks on Markov Diffusion

MarkovGNN This is the official PyTorch-Geometric implementation of MarkovGNN paper under the title "MarkovGNN: Graph Neural Networks on Markov Diffusi

HipGraph: High-Performance Graph Analytics and Learning 6 Sep 23, 2022
Open source code for Paper "A Co-Interactive Transformer for Joint Slot Filling and Intent Detection"

A Co-Interactive Transformer for Joint Slot Filling and Intent Detection This repository contains the PyTorch implementation of the paper: A Co-Intera

67 Dec 05, 2022
Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually.

Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually. It uses the concept of Image Background Removal using DeepLab Architecture (based on Semantic Se

Devashi Choudhary 5 Aug 24, 2022
Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis"

Beyond the Spectrum Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis" by Yang He, Ning Yu, Margret Keu

Yang He 27 Jan 07, 2023
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
The code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.

Neural Deformation Graphs Project Page | Paper | Video Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction Aljaž Božič, Pablo P

Aljaz Bozic 134 Dec 16, 2022
Simulation code and tutorial for BBHnet training data

Simulation Dataset for BBHnet NOTE: OLD README, UPDATE IN PROGRESS We generate simulation dataset to train BBHnet, our deep learning framework for det

0 May 31, 2022
Unified learning approach for egocentric hand gesture recognition and fingertip detection

Unified Gesture Recognition and Fingertip Detection A unified convolutional neural network (CNN) algorithm for both hand gesture recognition and finge

Mohammad 227 Dec 25, 2022
Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets.

Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets. Introduction We propose our dataloader API for loading and

1 Nov 19, 2021
This repository contains code to run experiments in the paper "Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers."

Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers This repository contains code to run experiments in the paper "Signal Stre

0 Jan 19, 2022
Vpw analyzer - A visual J1850 VPW analyzer written in Python

VPW Analyzer A visual J1850 VPW analyzer written in Python Requires Tkinter, Pan

7 May 01, 2022
App customer segmentation cohort rfm clustering

CUSTOMER SEGMENTATION COHORT RFM CLUSTERING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU Nên chuyển qua theme màu dark thì sẽ nhìn đẹp hơn https://customer-segmentat

hieulmsc 3 Dec 18, 2021
Code for the paper Task Agnostic Morphology Evolution.

Task-Agnostic Morphology Optimization This repository contains code for the paper Task-Agnostic Morphology Evolution by Donald (Joey) Hejna, Pieter Ab

Joey Hejna 18 Aug 04, 2022
HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval

HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval [toc] 1. Introduction This repository provides the code for our paper at

13 Dec 08, 2022