DFFNet: An IoT-perceptive Dual Feature Fusion Network for General Real-time Semantic Segmentation

Related tags

Deep LearningDFFNet
Overview

DFFNet

CIFReNet Show

Paper

DFFNet: An IoT-perceptive Dual Feature Fusion Network for General Real-time Semantic Segmentation.

Xiangyan Tang, Wenxuan Tu, Keqiu Li, Jieren Cheng.

Information Sciences, 565: 326-343, 2021.

License

All rights reserved. Licensed under the Apache License 2.0

The code is released for academic research use only. For commercial use, please contact [[email protected]].

Installation

Clone this repo.

https://github.com/WxTu/DFFNet.git
  • Windows or Linux
  • Python3
  • Pytorch(0.3+)
  • Numpy
  • Torchvision
  • Matplotlib

Preparation

We use Cityscapes, Camvid and Helen datasets. To train a model on these datasets, download datasets from official websites.

Our backbone network is pre-trained on the ImageNet dataset provided by F. Li et al. You can download publically available pre-trained MobileNet v2 from this website.

Code Structure

  • data/Dataset.py: processes the dataset before passing to the network.
  • model/DFFNet.py: defines the architecture of the whole model.
  • model/Backbone.py: defines the encoder.
  • model/Layers.py: defines the MFFM, LSPM, and others.
  • utils/Config.py: defines some hyper-parameters.
  • utils/Process.py: defines the process of data pretreatment.
  • utils/Utils.py: defines the loss, optimization, metrics, and others.
  • utils/Visualization.py: defines the data visualization.
  • Train.py: the entry point for training and validation.
  • Test.py: the entry point for testing.

Visualization

Visual Show

Contact

[email protected]

Any discussions or concerns are welcomed!

Citation

If you use this code for your research, please cite our papers.

@article{Tang2021DFFNet,
  title={DFFNet: An IoT-perceptive Dual Feature Fusion Network for General Real-time Semantic Segmentation},
  author={Xiangyan Tang and Wenxuan Tu and Keqiu Li and Jieren Cheng},
  journal={Information Sciences},
  volume={565},
  pages={326-343},
  year={2021}
}

Acknowledgement

https://github.com/ansleliu/LightNet

https://github.com/meetshah1995/pytorch-semseg

https://github.com/zijundeng/pytorch-semantic-segmentation

https://github.com/Tramac/awesome-semantic-segmentation-pytorch

Owner
Data Miner & CVer
DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction

DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction This is the implementation of DeepSTD in

5 Sep 26, 2022
Unofficial implementation of MLP-Mixer: An all-MLP Architecture for Vision

MLP-Mixer: An all-MLP Architecture for Vision This repo contains PyTorch implementation of MLP-Mixer: An all-MLP Architecture for Vision. Usage : impo

Rishikesh (ऋषिकेश) 175 Dec 23, 2022
Sign Language Translation with Transformers (COLING'2020, ECCV'20 SLRTP Workshop)

transformer-slt This repository gathers data and code supporting the experiments in the paper Better Sign Language Translation with STMC-Transformer.

Kayo Yin 107 Dec 27, 2022
Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)

Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)

Gyeongjae Choi 17 Sep 23, 2021
Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time

Semi Hand-Object Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time (CVPR 2021).

96 Dec 27, 2022
RE3: State Entropy Maximization with Random Encoders for Efficient Exploration

State Entropy Maximization with Random Encoders for Efficient Exploration (RE3) (ICML 2021) Code for State Entropy Maximization with Random Encoders f

Younggyo Seo 47 Nov 29, 2022
A paper using optimal transport to solve the graph matching problem.

GOAT A paper using optimal transport to solve the graph matching problem. https://arxiv.org/abs/2111.05366 Repo structure .github: Files specifying ho

neurodata 8 Jan 04, 2023
Code for "MetaMorph: Learning Universal Controllers with Transformers", Gupta et al, ICLR 2022

MetaMorph: Learning Universal Controllers with Transformers This is the code for the paper MetaMorph: Learning Universal Controllers with Transformers

Agrim Gupta 50 Jan 03, 2023
Aircraft design optimization made fast through modern automatic differentiation

Aircraft design optimization made fast through modern automatic differentiation. Plug-and-play analysis tools for aerodynamics, propulsion, structures, trajectory design, and much more.

Peter Sharpe 394 Dec 23, 2022
MultiMix: Sparingly Supervised, Extreme Multitask Learning From Medical Images (ISBI 2021, MELBA 2021)

MultiMix This repository contains the implementation of MultiMix. Our publications for this project are listed below: "MultiMix: Sparingly Supervised,

Ayaan Haque 27 Dec 22, 2022
Official code for: A Probabilistic Hard Attention Model For Sequentially Observed Scenes

"A Probabilistic Hard Attention Model For Sequentially Observed Scenes" Authors: Samrudhdhi Rangrej, James Clark Accepted to: BMVC'21 A recurrent atte

5 Nov 19, 2022
Unpaired Caricature Generation with Multiple Exaggerations

CariMe-pytorch The official pytorch implementation of the paper "CariMe: Unpaired Caricature Generation with Multiple Exaggerations" CariMe: Unpaired

Gu Zheng 37 Dec 30, 2022
Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi.

Spchcat Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi. Description spchcat is a command-line tool that read

Pete Warden 279 Jan 03, 2023
A Kitti Road Segmentation model implemented in tensorflow.

KittiSeg KittiSeg performs segmentation of roads by utilizing an FCN based model. The model achieved first place on the Kitti Road Detection Benchmark

Marvin Teichmann 890 Jan 04, 2023
Using pytorch to implement unet network for liver image segmentation.

Using pytorch to implement unet network for liver image segmentation.

zxq 1 Dec 17, 2021
This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?”

This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?” Usage To replicate our results in Secti

Albert Webson 64 Dec 11, 2022
2D Human Pose estimation using transformers. Implementation in Pytorch

PE-former: Pose Estimation Transformer Vision transformer architectures perform very well for image classification tasks. Efforts to solve more challe

Panteleris Paschalis 23 Oct 17, 2022
codes for IKM (arXiv2021, Submitted to IEEE Trans)

Image-specific Convolutional Kernel Modulation for Single Image Super-resolution This repository is for IKM introduced in the following paper Yuanfei

Yuanfei Huang 9 Dec 29, 2022
Research into Forex price prediction from price history using Deep Sequence Modeling with Stacked LSTMs.

Forex Data Prediction via Recurrent Neural Network Deep Sequence Modeling Research Paper Our research paper can be viewed here Installation Clone the

Alex Taradachuk 2 Aug 07, 2022
neural image generation

pixray Pixray is an image generation system. It combines previous ideas including: Perception Engines which uses image augmentation and iteratively op

dribnet 398 Dec 17, 2022