This toolkit provides codes to download and pre-process the SLUE datasets, train the baseline models, and evaluate SLUE tasks.

Overview

slue-toolkit

made-with-python License: MIT

We introduce Spoken Language Understanding Evaluation (SLUE) benchmark. This toolkit provides codes to download and pre-process the SLUE datasets, train the baseline models, and evaluate SLUE tasks. Refer https://arxiv.org/abs/2111.10367 for more details.

News

  • Nov. 22: We release the SLUE paper on arXiv along with the slue-toolkit repository. The repository contains data processing and evaluation scripts. We will publish the scripts for trainig the baseline models soon.

Installation

  1. git clone this repository and install slue-toolkit (development mode)
git clone https://github.com/asappresearch/slue-toolkit.git
pip install -e .

or install directly from Github

pip install git+https://github.com/asappresearch/slue-toolkit.git
  1. Install additional dependency based on your choice (e.g. you need fairseq and transformers for baselines)

SLUE Tasks

Automatic Speech Recognition (ASR)

Although this is not a SLU task, ASR can help analyze performance of downstream SLU tasks on the same domain. Additionally, pipeline approaches depend on ASR outputs, making ASR relevant to SLU. ASR is evaluated using word error rate (WER).

Named Entity Recognition (NER)

Named entity recognition involves detecting the named entities and their tags (types) in a given sentence. We evaluate performance using micro-averaged F1 and label-F1 scores. The F1 score evaluates an unordered list of named entity phrase and tag pairs predicted for each sentence. Only the tag predictions are considered for label-F1.

Sentiment Analysis (SA)

Sentiment analysis refers to classifying a given speech segment as having negative, neutral, or positive sentiment. We evaluate SA using macro-averaged (unweighted) recall and F1 scores.

Datasets

Corpus Size - utts (hours) Tasks License
Fine-tune Dev Test
SLUE-VoxPopuli 5,000 (14.5) 1,753 (5.0) 1,842 (4.9) ASR, NER CC0 (check complete license here)
SLUE-VoxCeleb 5,777 (12.8) 955 (2.1) 4,052 (9.0) ASR, SA CC-BY 4.0 (check complete license here)

For SLUE, you need VoxCeleb and VoxPopuli dataset. We carefully curated subset of those dataset for fine-tuning and evaluation for SLUE tasks, and we re-distribute the the subsets. Thus, you don't need to download a whole gigantic datasets. In the dataset, we also includes the human annotation and transcription for SLUE tasks. All you need to do is just running the script below and it will download and pre-process the dataset.

Download and pre-process dataset

bash scripts/download_datasets.sh

SLUE score evaluation

The test set data and annotation will be used for the official SLUE score evaluation, however we will not release the test set annotation. Thus, the SLUE score can be evaluated by submitting your prediction result in tsv format. We will prepare the website to accept your submission. Please stay tuned for this.

Model development rule

To train model, You can use fine-tuning and dev sets (audio, transcription and annotation) except the test set of SLUE task. Additionally you can use any kind of external dataset whether it is labeled or unlabeled for any purpose of training (e.g. pre-training and fine-tuning).

For vadidation of your model, you can use official dev set we provide, or you can make your own splits or cross-validation splits by mixing fine-tuning and dev set all together.

Baselines

ASR

Fine-tuning

Assuming that the preprocessed manifest files are in manifest/slue-voxceleb and manifest/slue-voxpopuli for SLUE-VoxCeleb and SLUE-VoxPopuli. This command fine-tune a wav2vec 2.0 base model on these two datasets using one GPU.

bash baselines/asr/ft-w2v2-base.sh manifest/slue-voxceleb save/asr/w2v2-base-vc
bash baselines/asr/ft-w2v2-base.sh manifest/slue-voxpopuli save/asr/w2v2-base-vp

Evaluation

To evaluate the fine-tuned wav2vec 2.0 ASR models on the dev set, please run the following commands.

python slue_toolkit/eval/eval_w2v.py eval_asr save/asr/w2v2-base-vc --data manifest/slue-voxceleb --subset dev
python slue_toolkit/eval/eval_w2v.py eval_asr save/asr/w2v2-base-vp --data manifest/slue-voxpopuli --subset dev

The WER will be printed directly. The predictions are saved in save/asr/w2v2-base-vc/pred-dev.wrd and save/asr/w2v2-base-vp/pred-dev.wrd and can be used for pipeline models.

More detail baseline experiment described here

NER

Fine-tuning End-to-end model

Assuming that the preprocessed manifest files are in manifest/slue-voxpopuli for SLUE-VoxPopuli. This command fine-tune a wav2vec 2.0 base model using one GPU.

bash baselines/ner/e2e_scripts/ft-w2v2-base.sh manifest/slue-voxpopuli/e2e_ner save/e2e_ner/w2v2-base

Evaluating End-to-End model

To evaluate the fine-tuned wav2vec 2.0 E2E NER model on the dev set, please run the following command. (decoding without language model)

bash baselines/ner/e2e_scripts/eval-ner.sh w2v2-base dev combined nolm

More detail baseline experiment described here

Sentiment Analysis

Fine-tuning

This command fine-tune a wav2vec 2.0 base model on the voxceleb dataset

bash baselines/sentiment/ft-w2v2-base-senti.sh manifest/slue-voxceleb save/sentiment/w2v2-base

Evaluation

To evaluate the fine-tuned wav2vec 2.0 sentiment model, run following commands or run baselines/sentiment/e2e_scripts/eval.sh

python3 slue_toolkit/eval/eval_w2v_sentiment.py --save-dir save/sentiment/w2v2-base --data manifest/slue-voxceleb --subset dev

More detail baseline experiment described here

Owner
ASAPP Research
AI for Enterprise
ASAPP Research
deep learning for image processing including classification and object-detection etc.

深度学习在图像处理中的应用教程 前言 本教程是对本人研究生期间的研究内容进行整理总结,总结的同时也希望能够帮助更多的小伙伴。后期如果有学习到新的知识也会与大家一起分享。 本教程会以视频的方式进行分享,教学流程如下: 1)介绍网络的结构与创新点 2)使用Pytorch进行网络的搭建与训练 3)使用Te

WuZhe 13.6k Jan 04, 2023
CellRank's reproducibility repository.

CellRank's reproducibility repository We believe that reproducibility is key and have made it as simple as possible to reproduce our results. Please e

Theis Lab 8 Oct 08, 2022
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Microsoft 17.3k Dec 29, 2022
A light weight data augmentation tool for training CNNs and Viola Jones detectors

hey-daug A light weight data augmentation tool for training CNNs and Viola Jones detectors (Haar Cascades). This tool inflates your data by up to six

Jaiyam Sharma 2 Nov 23, 2019
Scikit-learn compatible estimation of general graphical models

skggm : Gaussian graphical models using the scikit-learn API In the last decade, learning networks that encode conditional independence relationships

213 Jan 02, 2023
Code for the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness"

DU-VAE This is the pytorch implementation of the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness" Acknowledgement

Dazhong Shen 4 Oct 19, 2022
We propose a new method for effective shadow removal by regarding it as an exposure fusion problem.

Auto-exposure fusion for single-image shadow removal We propose a new method for effective shadow removal by regarding it as an exposure fusion proble

Qing Guo 146 Dec 31, 2022
NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset

NOD (Night Object Detection) Dataset NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset, BM

Igor Morawski 17 Nov 05, 2022
HomoInterpGAN - Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation

HomoInterpGAN Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation (CVPR 2019, oral) Installation The implementation is base

Ying-Cong Chen 99 Nov 15, 2022
Unsupervised captioning - Code for Unsupervised Image Captioning

Unsupervised Image Captioning by Yang Feng, Lin Ma, Wei Liu, and Jiebo Luo Introduction Most image captioning models are trained using paired image-se

Yang Feng 207 Dec 24, 2022
Generate Cartoon Images using Generative Adversarial Network

AvatarGAN ✨ Generate Cartoon Images using DC-GAN Deep Convolutional GAN is a generative adversarial network architecture. It uses a couple of guidelin

Aakash Jhawar 50 Dec 29, 2022
Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective

Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective Zhengzhuo Xu, Zenghao Chai, Chun Yuan This is the PyTorch implement

Sincere 16 Dec 15, 2022
Model Zoo for MindSpore

Welcome to the Model Zoo for MindSpore In order to facilitate developers to enjoy the benefits of MindSpore framework, we will continue to add typical

MindSpore 226 Jan 07, 2023
A collection of resources, problems, explanations and concepts that are/were important during my Data Science journey

Data Science Gurukul List of resources, interview questions, concepts I use for my Data Science work. Topics: Basics of Programming with Python + Unde

Smaranjit Ghose 10 Oct 25, 2022
HiFi++: a Unified Framework for Neural Vocoding, Bandwidth Extension and Speech Enhancement

HiFi++ : a Unified Framework for Neural Vocoding, Bandwidth Extension and Speech Enhancement This is the unofficial implementation of Vocoder part of

Rishikesh (ऋषिकेश) 118 Dec 29, 2022
Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields"

NeRF++ Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields" Work with 360 capture of large-scale unbounded scenes. Sup

Kai Zhang 722 Dec 28, 2022
Simulation of Self Driving Car

In this repository, the code to use Udacity's self driving car simulator as a testbed for training an autonomous car are provided.

Shyam Das Shrestha 1 Nov 21, 2021
Python code to generate art with Generative Adversarial Network

GAN_Canvas_Maker Generating Art using Generative Adversarial Network (GAN) Python code to generate art with Generative Adversarial Network: https://to

Jonny Banana 10 Aug 22, 2022
A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

Ayushman Dash 93 Aug 04, 2022
This repository contains the code used for the implementation of the paper "Probabilistic Regression with HuberDistributions"

Public_prob_regression_with_huber_distributions This repository contains the code used for the implementation of the paper "Probabilistic Regression w

David Mohlin 1 Dec 04, 2021