Distributed DataLoader For Pytorch Based On Ray

Overview

Dpex——用户无感知分布式数据预处理组件

一、前言

随着GPU与CPU的算力差距越来越大以及模型训练时的预处理Pipeline变得越来越复杂,CPU部分的数据预处理已经逐渐成为了模型训练的瓶颈所在,这导致单机的GPU配置的提升并不能带来期望的线性加速。预处理性能瓶颈的本质在于每个GPU能够使用的CPU算力受限, 为了解决这个问题NVIDIA提出了scale up的方案——GPU数据预处理库DALI,Tensorflow给出了scale out的方案——分布式数据预处理组件DataService,而在这里我们给出Pytorch生态中的scale out方案——分布式数据预处理组件Dpex。

二、架构介绍(介绍Pytorch DataLoader本身的架构以及DistDataLoader的架构)

Dpex的采用了和Pytorch的DataLoader同样的架构设计并借助Ray将数据预处理任务调度至其他机器节点进行计算。

三、使用示例

不仅在设计上,Dpex的实现上也完全兼容Pytorch的DataLoader。当并行数据预处理时,若设置distribute_modeTrueDpexDataLoader使用 _RayDataLoaderIter实现分布式数据预处理,当设置为FalseDpexDataLoader退回到使用Pytorch本身的_MultiProcessingDataLoaderIter 实现并行数据预处理与加载。在Pytorch训练中使用Dpex非常的简单,只需要将使用到Pytorch的DataLoader的地方替换为Dpex中的DpexDataLoader即可,当你的训练机器本身为Ray集群中的一个节点时,设置 distribute_mode=True可以启用分布式数据预处理。在下面我们给出单卡训练,使用DataParallel进行多卡训练以及使用DDP进行多卡训练时使用Dpex的示例,具体可参考测试文件。
class DpexDataLoader(torch.utils.data.DataLoader): def init(self, dataset: Dataset[T_co], distribute_mode: Optional[bool] = False, head_address="auto", batch_size: Optional[int] = 1, shuffle: bool = False, sampler: Optional[Sampler[int]] = None, batch_sampler: Optional[Sampler[Sequence[int]]] = None, num_workers: int = 0, collate_fn: Optional[_collate_fn_t] = None, pin_memory: bool = False, drop_last: bool = False, timeout: float = 0, worker_init_fn: Optional[_worker_init_fn_t] = None, multiprocessing_context=None, generator=None, *, prefetch_factor: int = 2):

3.1 单卡训练

如下我们给出单卡训练时使用DpexDataLoader的示例代码,具体代码细节参见测试代码文件.

from torchvision import datasets
from torchvision.transforms import ToTensor
from Dpex import dataloader

training_data = datasets.FashionMNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor()
)
# use DpexDataLoader
train_loader = dataloader.DpexDataLoader(training_data, distribute_mode=True, num_workers=10, batch_size=100, shuffle=True)

for epoch in range(3):
    for index, (image, label) in enumerate(train_loader):
       # your train process
       pass

3.2 基于DataParallel的多卡训练

如下我们给出使用DataParallel并行训练时使用DpexDataLoader的示例代码,具体代码细节参见测试代码文件.

import torch
import torch.nn as nn
from torch.autograd import Variable
from torch.utils.data import Dataset
from Dpex import dataloader

class MyOwnDataset(Dataset):
     pass
     
# use DpexDataLoader
data_loader = dataloader.DpexDataLoader(dataset=RandomDataset(input_size, data_size),
                                        distribute_mode=True, batch_size=batch_size, shuffle=True, num_workers=10)

class Model(nn.Module):
    pass
    
model = Model()

if torch.cuda.is_available():
    model.cuda()

if torch.cuda.device_count() > 1:
    model = nn.DataParallel(model)

for data in data_loader:
   # train your own model
   pass

3.3 基于DDP的多卡训练

如下我们给出使用DDP并行训练时使用DpexDataLoader的示例代码,具体代码细节参见测试代码文件.

import torch
import torch.nn as nn
from torch.utils.data import Dataset
from Dpex.dataloader import DpexDataLoader
from torch.utils.data.distributed import DistributedSampler

# start command: CUDA_VISIBLE_DEVICES=1,6,7 python -m torch.distributed.launch --nproc_per_node=2 pytorch_ddp.py
# 1) 初始化
torch.distributed.init_process_group(backend="nccl")

input_size = 5
output_size = 2
batch_size = 1
data_size = 90000

# 2) 配置每个进程的gpu
local_rank = torch.distributed.get_rank()
torch.cuda.set_device(local_rank)
device = torch.device("cuda", local_rank)

class RandomDataset(Dataset):
    def __init__(self, size, length):
        self.len = length
        self.data = torch.randn(length, size)

    def __getitem__(self, index):
        return self.data[index]

    def __len__(self):
        return self.len

dataset = RandomDataset(input_size, data_size)
# 3)使用DistributedSampler
rand_loader = DpexDataLoader(dataset=dataset, distribute_mode=True, batch_size=batch_size, sampler=DistributedSampler(dataset), num_workers=10)

class Model(nn.Module):
    def __init__(self, input_size, output_size):
        super(Model, self).__init__()
        self.fc = nn.Linear(input_size, output_size)

    def forward(self, input):
        output = self.fc(input)
        print("  In Model: input size", input.size(),
              "output size", output.size())
        return output

model = Model(input_size, output_size)

# 4) 封装之前要把模型移到对应的gpu
model.to(device)

if torch.cuda.device_count() > 1:
    print("Let's use", torch.cuda.device_count(), "GPUs!")
    # 5) 封装
    model = torch.nn.parallel.DistributedDataParallel(model,
                                                      device_ids=[local_rank],
                                                      output_device=local_rank)

for data in rand_loader:
    if torch.cuda.is_available():
        input_var = data
    else:
        input_var = data

    output = model(input_var)
    print("Outside: input size", input_var.size(), "output_size", output.size())

四、Benchmark

在接下来的Benchamark中我们核心展示两个部分的内容:

  • DpexDataLoader对于模型训练精度的影响
  • DpexDataLoader对于模型训练速度的影响

Dpex只是将单机数据预处理水平扩展到了多机以借助更多的算力来加速数据预处理而不改变数据本身的加载和与处理方式,所以本身对模型的精度不会有负面影响。对于数据预处理较重的情况

4.1 模型精度Benchmark

我们在FashionMNIST数据集上进行模型训练精度的Benchmark实验,具体代码细节见测试文件

Accuracy(%) Loss GPU Settings DpexDataLoader(distributed_mode=?) Epoch Learning rate Batch size
90.65 0.137 Single GPU True 40 0.001 100
91.09 0.112 Single GPU False 40 0.001 100
90.67 0.016 DataParallel True 40 0.001 100
90.32 0.008 DataParallel False 40 0.001 100
88.98 0.034 DDP True 40 0.001 100
89.84 0.030 DDP False 40 0.001 100

4.2 训练速度Benchmark

五、环境依赖:

Dpex借助Ray完成任务的跨机调度,所以若希望使用分布式数据预处理首先需要将你的训练机器构建成Ray的集群。Ray的集群构建细节具体参考Ray的相关文档

Owner
Dalong
I am now a master student in Tsinghua University and i major in software engeneering. Currently i am foucing on high performance graph learning system.
Dalong
Code for “ACE-HGNN: Adaptive Curvature ExplorationHyperbolic Graph Neural Network”

ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network This repository is the implementation of ACE-HGNN in PyTorch. Environment pyt

9 Nov 28, 2022
Official PyTorch implementation of Spatial Dependency Networks.

Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling Đorđe Miladinović   Aleksandar Stanić   Stefan Bauer   Jürgen Schmid

Djordje Miladinovic 34 Jan 19, 2022
ViSD4SA, a Vietnamese Span Detection for Aspect-based sentiment analysis dataset

UIT-ViSD4SA PACLIC 35 General Introduction This repository contains the data of the paper: Span Detection for Vietnamese Aspect-Based Sentiment Analys

Nguyễn Thị Thanh Kim 5 Nov 13, 2022
OpenMMLab Text Detection, Recognition and Understanding Toolbox

Introduction English | 简体中文 MMOCR is an open-source toolbox based on PyTorch and mmdetection for text detection, text recognition, and the correspondi

OpenMMLab 3k Jan 07, 2023
This program can detect your face and add an Christams hat on the top of your head

Auto_Christmas This program can detect your face and add a Christmas hat to the top of your head. just run the Auto_Christmas.py, then you can see the

3 Dec 22, 2021
Implementation of Fast Transformer in Pytorch

Fast Transformer - Pytorch Implementation of Fast Transformer in Pytorch. This only work as an encoder. Yannic video AI Epiphany Install $ pip install

Phil Wang 167 Dec 27, 2022
A lightweight Python-based 3D network multi-agent simulator. Uses a cell-based congestion model. Calculates risk, loudness and battery capacities of the agents. Suitable for 3D network optimization tasks.

AMAZ3DSim AMAZ3DSim is a lightweight python-based 3D network multi-agent simulator. It uses a cell-based congestion model. It calculates risk, battery

Daniel Hirsch 13 Nov 04, 2022
This is a Deep Leaning API for classifying emotions from human face and human audios.

Emotion AI This is a Deep Leaning API for classifying emotions from human face and human audios. Starting the server To start the server first you nee

crispengari 5 Oct 02, 2022
Code for the paper "Improved Techniques for Training GANs"

Status: Archive (code is provided as-is, no updates expected) improved-gan code for the paper "Improved Techniques for Training GANs" MNIST, SVHN, CIF

OpenAI 2.2k Jan 01, 2023
In this work, we will implement some basic but important algorithm of machine learning step by step.

WoRkS continued English 中文 Français Probability Density Estimation-Non-Parametric Methods(概率密度估计-非参数方法) 1. Kernel / k-Nearest Neighborhood Density Est

liziyu0104 1 Dec 30, 2021
DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification

DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification Created by Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, Ch

Yongming Rao 414 Jan 01, 2023
A JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short.

BraVe This is a JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short. The model provided in this package wa

DeepMind 44 Nov 20, 2022
This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies.

Deformable Neural Radiance Fields This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies. Project Page Paper Video This codebase conta

Google 1k Jan 09, 2023
The second project in Python course on FCC

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Denise T 1 Dec 13, 2021
Predict multi paths to a moving person depending on his trajectory history.

Multi-future Trajectory Prediction The project is about using the Multiverse model to make possible multible-future trajectory prediction for a seen p

Said Gamal 1 Jan 18, 2022
Blender Add-on that sets a Material's Base Color to one of Pantone's Colors of the Year

Blender PCOY (Pantone Color of the Year) MCMC (Mid-Century Modern Colors) HG71 (House & Garden Colors 1971) Blender Add-ons That Assign a Custom Color

Don Schnitzius 15 Nov 20, 2022
PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 20

Zhengqi Li 585 Jan 04, 2023
This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018

Learning-to-See-in-the-Dark This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018, by Chen Chen, Qifeng Chen, Jia Xu, and Vl

5.3k Jan 01, 2023
This is the face keypoint train code of project face-detection-project

face-key-point-pytorch 1. Data structure The structure of landmarks_jpg is like below: |--landmarks_jpg |----AFW |------AFW_134212_1_0.jpg |------AFW_

I‘m X 3 Nov 27, 2022
Classification of EEG data using Deep Learning

Graduation-Project Classification of EEG data using Deep Learning Epilepsy is the most common neurological disease in the world. Epilepsy occurs as a

Osman Alpaydın 5 Jun 24, 2022