Repository for "Improving evidential deep learning via multi-task learning," published in AAAI2022

Overview

Improving evidential deep learning via multi task learning

It is a repository of AAAI2022 paper, “Improving evidential deep learning via multi-task learning”, by Dongpin Oh and Bonggun Shin.

This repository contains the code to reproduce the Multi-task evidential neural network (MT-ENet), which uses the Lipschitz MSE loss function as the additional loss function of the evidential regression network (ENet). The Lipschitz MSE loss function can improve the accuracy of the ENet while preserving its uncertainty estimation capability, by avoiding gradient conflict with the NLL loss function—the original loss function of the ENet.

drawing

Setup

Please refer to "requirements.txt" for requring packages of this repo.

pip install -r requirements.txt

Training the ENet with the Lipschitz-MSE loss: example

from mtevi.mtevi import EvidentialMarginalLikelihood, EvidenceRegularizer, modified_mse
...
net = EvidentialNetwork() ## Evidential regression network
nll_loss = EvidentialMarginalLikelihood() ## original loss, NLL loss
reg = EvidenceRegularizer() ## evidential regularizer
mmse_loss = modified_mse ## lipschitz MSE loss
...
for inputs, labels in dataloader:
	gamma, nu, alpha, beta = net(inputs)
	loss = nll_loss(gamma, nu, alpha, beta, labels)
	loss += reg(gamma, nu, alpha, beta, labels)
	loss += mmse_loss(gamma, nu, alpha, beta, labels)
	loss.backward()	

Quick start

  • Synthetic data experiment.
python synthetic_exp.py
  • UCI regression benchmark experiments.
python uci_exp_norm -p energy
  • Drug target affinity (DTA) regression task on KIBA and Davis datasets.
python train_evinet.py -o test --type davis -f 0 --evi # ENet
python train_evinet.py -o test --type davis -f 0  # MT-ENet
  • Gradient conflict experiment on the DTA benchmarks
python check_conflict.py --type davis -f 0 # Conflict between the Lipschitz MSE (proposed) and NLL loss. 
python check_conflict.py --type davis -f 0 --abl # Conflict between the simple MSE loss and NLL loss.

Characteristic of the Lipschitz MSE loss

drawing

  • The Lipschitz MSE loss function can support training the ENet to more accurately predicts target values.
  • It regularizes its gradient to prevent gradient conflict with the NLL loss--the original loss function--if the NLL loss increases predictive uncertainty of the ENet.
  • Please check our paper for details.
Owner
deargen
deargen
This repo is customed for VisDrone.

Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble

53 Jul 17, 2022
project page for VinVL

VinVL: Revisiting Visual Representations in Vision-Language Models Updates 02/28/2021: Project page built. Introduction This repository is the project

308 Jan 09, 2023
Code and data for "TURL: Table Understanding through Representation Learning"

TURL This Repo contains code and data for "TURL: Table Understanding through Representation Learning". Environment and Setup Data Pretraining Finetuni

SunLab-OSU 63 Nov 23, 2022
A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers.

Dying Light 2 PAKFile Utility A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers. This tool aims to make PAKFile (.pak files) modding a

RHQ Online 12 Aug 26, 2022
Eth brownie struct encoding example

eth-brownie struct encoding example Overview This repository contains an example of encoding a struct, so that it can be used in a function call, usin

Ittai Svidler 2 Mar 04, 2022
Experiments and code to generate the GINC small-scale in-context learning dataset from "An Explanation for In-context Learning as Implicit Bayesian Inference"

GINC small-scale in-context learning dataset GINC (Generative In-Context learning Dataset) is a small-scale synthetic dataset for studying in-context

P-Lambda 29 Dec 19, 2022
git《Beta R-CNN: Looking into Pedestrian Detection from Another Perspective》(NeurIPS 2020) GitHub:[fig3]

Beta R-CNN: Looking into Pedestrian Detection from Another Perspective This is the pytorch implementation of our paper "[Beta R-CNN: Looking into Pede

35 Sep 08, 2021
The "breathing k-means" algorithm with datasets and example notebooks

The Breathing K-Means Algorithm (with examples) The Breathing K-Means is an approximation algorithm for the k-means problem that (on average) is bette

Bernd Fritzke 75 Nov 17, 2022
CNN visualization tool in TensorFlow

tf_cnnvis A blog post describing the library: https://medium.com/@falaktheoptimist/want-to-look-inside-your-cnn-we-have-just-the-right-tool-for-you-ad

InFoCusp 778 Jan 02, 2023
Pytorch implementation of Supporting Clustering with Contrastive Learning, NAACL 2021

Supporting Clustering with Contrastive Learning SCCL (NAACL 2021) Dejiao Zhang, Feng Nan, Xiaokai Wei, Shangwen Li, Henghui Zhu, Kathleen McKeown, Ram

231 Jan 05, 2023
Industrial knn-based anomaly detection for images. Visit streamlit link to check out the demo.

Industrial KNN-based Anomaly Detection ⭐ Now has streamlit support! ⭐ Run $ streamlit run streamlit_app.py This repo aims to reproduce the results of

aventau 102 Dec 26, 2022
AI4Good project for detecting waste in the environment

Detect waste AI4Good project for detecting waste in environment. www.detectwaste.ml. Our latest results were published in Waste Management journal in

108 Dec 25, 2022
This repository contains code to train and render Mixture of Volumetric Primitives (MVP) models

Mixture of Volumetric Primitives -- Training and Evaluation This repository contains code to train and render Mixture of Volumetric Primitives (MVP) m

Meta Research 125 Dec 29, 2022
🧑‍🔬 verify your TEAL program by experiment and observation

Graviton - Testing TEAL with Dry Runs Tutorial Local Installation The following instructions assume that you have make available in your local environ

Algorand 18 Jan 03, 2023
Summary of related papers on visual attention

This repo is built for paper: Attention Mechanisms in Computer Vision: A Survey paper Vision-Attention-Papers Channel attention Spatial attention Temp

MenghaoGuo 2.1k Dec 30, 2022
Code to reproduce results from the paper "AmbientGAN: Generative models from lossy measurements"

AmbientGAN: Generative models from lossy measurements This repository provides code to reproduce results from the paper AmbientGAN: Generative models

Ashish Bora 87 Oct 19, 2022
Few-Shot-Intent-Detection includes popular challenging intent detection datasets with/without OOS queries and state-of-the-art baselines and results.

Few-Shot-Intent-Detection Few-Shot-Intent-Detection is a repository designed for few-shot intent detection with/without Out-of-Scope (OOS) intents. It

Jian-Guo Zhang 73 Dec 26, 2022
Malware Analysis Neural Network project.

MalanaNeuralNetwork Description Malware Analysis Neural Network project. Table of Contents Getting Started Requirements Installation Clone Set-Up VENV

2 Nov 13, 2021
Object Detection with YOLOv3

Object Detection with YOLOv3 Bu projede YOLOv3-608 modeli kullanılmıştır. Requirements Python 3.8 OpenCV Numpy Documentation Yolo ile ilgili detaylı b

Ayşe Konuş 0 Mar 27, 2022
Fine-tuning StyleGAN2 for Cartoon Face Generation

Cartoon-StyleGAN 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation Abstract Recent studies have shown remarkable success in the unsupervised imag

Jihye Back 520 Jan 04, 2023