Greedy Gaussian Segmentation

Related tags

Deep LearningGGS
Overview

GGS

Greedy Gaussian Segmentation (GGS) is a Python solver for efficiently segmenting multivariate time series data. For implementation details, please see our paper at http://stanford.edu/~boyd/papers/ggs.html.


The GGS Solver takes an n-by-T data matrix and breaks the T timestamps on an n-dimensional vector into segments over which the data is well explained as independent samples from a multivariate Gaussian distribution. It does so by formulating a covariance-regularized maximum likelihood problem and solving it using a greedy heuristic, with full details described in the paper.

Download & Setup

  1. Download the source code in the terminal by running:
git clone [email protected]:davidhallac/GGS.git
  1. Confirm that the code was properly downloaded by running:
cd GGS
python helloworld.py
  1. To write your own Python function that uses ggs, simply make sure that ggs.py is in the same directory as your new file, and then add the following code to the beginning of your script:
from ggs import *

Supported Functions

The GGS package has three main functions:

bps, objectives = GGS(data, Kmax, lamb)

Finds K breakpoints in the data for a given regularization parameter lambda

Inputs

data - a n-by-T data matrix, with T timestamps of an n-dimensional vector

Kmax - the number of breakpoints to find

lamb - regularization parameter for the regularized covariance

Returns

bps - List of lists, where element i of the larger list is the set of breakpoints found at K = i in the GGS algorithm

objectives - List of the objective values at each intermediate step (for K = 0 to Kmax)


meancovs = GGSMeanCov(data, breakpoints, lamb)

Finds the means and regularized covariances of each segment, given a set of breakpoints.

Inputs

data - a n-by-T data matrix, with T timestamps of an n-dimensional vector

breakpoints - a list of breakpoint locations

lamb - regularization parameter for the regularized covariance

Returns

meancovs - a list of (mean, covariance) tuples for each segment in the data


cvResults = GGSCrossVal(data, Kmax=25, lambList = [0.1, 1, 10])

Runs 10-fold cross validation, and returns the train and test set likelihood for every (K, lambda) pair up to Kmax

Inputs

data - a n-by-T data matrix, with T timestamps of an n-dimensional vector

Kmax - the maximum number of breakpoints to run GGS on

lambList - a list of regularization parameters to test

Returns

cvResults - list of (lamb, ([TrainLL],[TestLL])) tuples for each regularization parameter in lambList. Here, TrainLL and TestLL are the average per-sample log-likelihood across the 10 folds of cross-validation for all K's from 0 to Kmax


Additional optional parameters (for all three functions above):

features = [] - select a certain subset of columns in the data to operate on

verbose = False - Print intermediate steps when running the algorithm

Example Usage

Running financeExample.py will yield the following plot, showing the objective (Equation 4 in the paper) vs. the number of breakpoints:

Objective vs. # of breakpoints

Once we have solved for the locations of the breakpoints, we can use the FindMeanCovs() function to find the means and covariances of each segment. In the example in helloworld.py, plotting the means, variances, and covariances of the three signals yields:

Means and covariances over time

To run cross-validation, which can be useful in determining optimal values of K and lambda, we can use the following code to load the data, run the cross-validation, and then plot the test and train likelihood:

from ggs import *
import numpy as np
import matplotlib.pyplot as plt

filename = "Returns.txt"
data = np.genfromtxt(filename,delimiter=' ')
feats = [0,3,7]

#Run cross-validaton up to Kmax = 30, at lambda = 1e-4
maxBreaks = 30
lls = GGSCrossVal(data, Kmax=maxBreaks, lambList = [1e-4], features = feats, verbose = False)

trainLikelihood = lls[0][1][0]
testLikelihood = lls[0][1][1]
plt.plot(range(maxBreaks+1), testLikelihood)
plt.plot(range(maxBreaks+1), trainLikelihood)
plt.legend(['Test LL','Train LL'], loc='best')
plt.show()

The resulting plot looks like:

Test and train likelihood

References

Greedy Gaussian Segmentation of Time Series Data -- D. Hallac, P. Nystrup, and S. Boyd

Authors

David Hallac, Peter Nystrup, and Stephen Boyd.

Owner
Stanford University Convex Optimization Group
Stanford University Convex Optimization Group
Notspot robot simulation - Python version

Notspot robot simulation - Python version This repository contains all the files and code needed to simulate the notspot quadrupedal robot using Gazeb

50 Sep 26, 2022
Flower - A Friendly Federated Learning Framework

Flower - A Friendly Federated Learning Framework Flower (flwr) is a framework for building federated learning systems. The design of Flower is based o

Adap 1.8k Jan 01, 2023
LSTMs (Long Short Term Memory) RNN for prediction of price trends

Price Prediction with Recurrent Neural Networks LSTMs BTC-USD price prediction with deep learning algorithm. Artificial Neural Networks specifically L

5 Nov 12, 2021
TransPrompt - Towards an Automatic Transferable Prompting Framework for Few-shot Text Classification

TransPrompt This code is implement for our EMNLP 2021's paper 《TransPrompt:Towards an Automatic Transferable Prompting Framework for Few-shot Text Cla

WangJianing 23 Dec 21, 2022
Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)

Learning Structural Edits via Incremental Tree Transformations Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21) 1.

NeuLab 40 Dec 23, 2022
Practical Single-Image Super-Resolution Using Look-Up Table

Practical Single-Image Super-Resolution Using Look-Up Table [Paper] Dependency Python 3.6 PyTorch glob numpy pillow tqdm tensorboardx 1. Training deep

Younghyun Jo 116 Dec 23, 2022
NeRF Meta-Learning with PyTorch

NeRF Meta Learning With PyTorch nerf-meta is a PyTorch re-implementation of NeRF experiments from the paper "Learned Initializations for Optimizing Co

Sanowar Raihan 78 Dec 18, 2022
Dialect classification

Dialect-Classification This repository presents the data that was used in a talk at ICKL-5 (5th International Conference on Kurdish Linguistics) at th

Kurdish-BLARK 0 Nov 12, 2021
Code to reproduce the experiments from our NeurIPS 2021 paper " The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective"

Code To run: python runner.py new --save SAVE_NAME --data PATH_TO_DATA_DIR --dataset DATASET --model model_name [options] --n 1000 - train - t

Geoff Pleiss 5 Dec 12, 2022
😮The official implementation of "CoNeRF: Controllable Neural Radiance Fields" 😮

CoNeRF: Controllable Neural Radiance Fields This is the official implementation for "CoNeRF: Controllable Neural Radiance Fields" Project Page Paper V

Kacper Kania 61 Dec 24, 2022
This code is a near-infrared spectrum modeling method based on PCA and pls

Nirs-Pls-Corn This code is a near-infrared spectrum modeling method based on PCA and pls 近红外光谱分析技术属于交叉领域,需要化学、计算机科学、生物科学等多领域的合作。为此,在(北邮邮电大学杨辉华老师团队)指导下

Fu Pengyou 6 Dec 17, 2022
Research into Forex price prediction from price history using Deep Sequence Modeling with Stacked LSTMs.

Forex Data Prediction via Recurrent Neural Network Deep Sequence Modeling Research Paper Our research paper can be viewed here Installation Clone the

Alex Taradachuk 2 Aug 07, 2022
Weakly Supervised Learning of Rigid 3D Scene Flow

Weakly Supervised Learning of Rigid 3D Scene Flow This repository provides code and data to train and evaluate a weakly supervised method for rigid 3D

Zan Gojcic 124 Dec 27, 2022
Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation

Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation The code of: Cross-Image Region Mining with Region Proto

LiuWeide 16 Nov 26, 2022
Code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection"

CTDNet The PyTorch code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection" Requirements Python 3.6

CVTEAM 28 Oct 20, 2022
​ This is the Pytorch implementation of Progressive Attentional Manifold Alignment.

PAMA This is the Pytorch implementation of Progressive Attentional Manifold Alignment. Requirements python 3.6 pytorch 1.2.0+ PIL, numpy, matplotlib C

98 Nov 15, 2022
4th place solution to datafactory challenge by Intermarché.

Solution to Datafactory challenge by Intermarché. 4th place solution to datafactory challenge by Intermarché. The objective of the challenge is to pre

Raphael Sourty 11 Mar 19, 2022
Meta Self-learning for Multi-Source Domain Adaptation: A Benchmark

Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark Project | Arxiv | YouTube | | Abstract In recent years, deep learning-based methods

CVSM Group - email: <a href=[email protected]"> 188 Dec 12, 2022
A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR'2021 - DPML and MLSys'21 - GNNSys workshops.

FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks A Research-oriented Federated Learning Library and Benchmark Platform

FedML-AI 175 Dec 01, 2022
a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LSTM layers

RNN-Playwrite a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LS

Arno Barton 1 Oct 29, 2021