Data-depth-inference - Data depth inference with python

Overview

Welcome!

This readme will guide you through the use of the code in this repository.

The code in this repository is for nonparametric prior-free and likelihood-free posterior inference.

We named this method: Inference with consonant structures via data peeling

As the name suggests, this method construct consonant confidence structures directly from data using a procedure name data peeling.

When to use this code?

  • The probability distribution of the data-generating mechanism, $P_{X}$ is multivariate (d>2)
  • The distribution family (e.g. lognormal) of $P_{X}$ is unkown
  • $P_{X}$ is stationary
  • $X_{i}, i=1,...,n$ are iid samples drown from $P_{X}$
  • For backward propagation, i.e. $P_{X}$ is the distribution of an output quantity and inference is done on the inputs
  • When uncertainty quantification based solely on data is needed: e.g. computing failure probability based on data only
  • When there is scarcity of data (small sample size), so the inferential (epistemic) uncertainty is predominant
  • The model x=f(y) is not available, but runs of the model can be requested offline
  • When the data has inherent uncertainty, i.e. interval uncertainty

Why use this code?

  • It's nonparametric so there is no need to assume a distribution family
  • It's prior-free so no prior knowledge is needed on the parameters to be inferred
  • It's likelihood-free so no stochastic assumption about the error is made
  • It is fully parallel, so only indipendent evaluations of the model are needed
  • The inferential (epistemic) uncertainty is rigorously quantified
  • The dipendence between the paramters is fully quantified and encoded in the structures

When not to use this code?

  • The sample size of the data set is way larger than its dimension (use parametric inference instead or prior-based inference)
  • $P_{X}$ is highly non-stationary

Unanswered questions

  • How can the assumption of consonance be relaxed to better approximate the credal set?
  • How can we spot precise distributions compatible with the structures that are not in the credal set?
  • How can the peeling procedure be extended to parametric inference?

Extensions and future work

(1) Compute data depths with complex shapes, e.g. using a perceptron representation

(2) Add code for discovering precise probability distribution in the consonant structures

(3) Add code for computing the data depth of box-shaped samples (inherent uncertainty)

References

[1] De Angelis, M., Rocchetta, R., Gray, A., & Ferson, S. (2021). Constructing Consonant Predictive Beliefs from Data with Scenario Theory. Proceedings of Machine Learning Research, 147, 362-362. https://leo.ugr.es/isipta21/pmlr/deangelis21.pdf

[2] https://opensource.org/licenses/MIT

Getting started

First, download or clone this repository on your local machine.

git clone [email protected]:marcodeangelis/data-depth-inference.git

Then change directory cd to the downloaded repository, and open a Python interpreter or Jupyter notebook.

We'll start by importing the code that we need.

from algorithm.peeling import (data_peeling_algorithm,data_peeling_backward,peeling_to_structure,uniform)
from algorithm.plots import (plot_peeling,plot_peeling_nxd,plot_peeling_nxd_back,plot_peeling_nx2,plot_scattermatrix,plot_fuzzy)
from algorithm.fuzzy import (samples_to_fuzzy_projection,boxes_to_fuzzy_projection,coverage_samples)
from algorithm.examples import (pickle_load,pickle_dump,banana_data,banana_model)

Forward inference problem

The forward inference problem consists in targeting $p_{X}$, and characterising the inferential uncertainty of the quantity $X$ that is being observed.

Generating synthetic data

Let us generate n=100 iid samples from some data generating mechanism. We'll then need to forget about the mechanism, as in reality we are not supposed to know what $P_{X}$ looks like.

Each sample $X_i$ is a vector with three components: $X_i \in R^3$, so $d=3$.

X = banana_data(n=100,d=3)

Let us see how this data looks like in a scatter plot:

plot_scattermatrix(X,bins=20,figsize=(10,10))

png

Run the inference algorithm

We can now apply the data-peeling procedure to output the depth of the data set.

a,b = data_peeling_algorithm(X,tol=0.01)
# a: is a list of subindices corresponding to the support vectors
# b: is a list of enclosing sets (boxes by default)

The depth of the data is an integer indicating how many levels there are.

We can now assign to each level a lower probability measure either using scenario theory or c-boxes. We'll set the confidence level to $\beta=0.01$.

f,p = peeling_to_structure(a,b,kind='scenario',beta=0.01)
# f: is a structure containing projections
# p: is a list of lower probability, one for each level

With the enclosing sets and the lower measures associated to them, we can now plot the results

plot_peeling_nxd(X,a,b,p=p,figsize=(12,12))

png

The inference task terminates here.

What next?

(1) We can hypothesise a joint probability distribution $\hat{P}_{X}$ and check if it is contained in the consonant structure.

Then, repeating this procedure we can build a set of compatible distribtions, however there will be no guarantee that these distributions are in the actual credal set. So by doing so we'll lose rigour.

(2) We can use an possibility-to-imprecise-probability transform to turn these structures into p-boxes.

Backward (indirect) inference problem

The backward inference problem targets $P_{Y}$, while characterising the inferential uncertainty of the quantity $X$, which is inderectly been observed via $Y=f(X)$.

In other words, we target $P_{Y}$, while learning $P(X)$, with $Y=f(X)$.

We'll call $f$ a model, for example an engineering model.

Generating synthetic data

Again we'll generate n=100 iid samples from some data generating mechanism $P_{Y}$. Each sample $Y_i$ is a vector with two components: $Y_i \in R^2$, so $d=2$.

However, this time we are going to need to know the model $f$ that links the input space $X$ with the output space $Y$.

The model is as follows: $f:R^3 -> R^2$, so each sample in the input space is a vector with three components: $X_i \in R^3$, so $d_=3$.

For simplicity and without loss of generality we'll assume that the model $f$ is the correct one. So $Y_i$ will be generated via the function itself.

Let us define the model as described above, so: $y = (3 x_1 * x_3,\ x_1^2 + x_2)$.

In code the expression looks:

import numpy
def f(x):
    d=2
    n,d_ = x.shape
    y = numpy.empty((n,d),dtype=float)
    y[:,0], y[:,1] = x[:,0]*3 + x[:,2], x[:,0]**2 + x[:,1] 
    return y

Now we generate n=100 random data for $X$ and pass it through $f$ to obtain our data $Y_i$.

import scipy.stats as stats
n, d_ = 100, 3
X_proxy = stats.norm(loc=0,scale=2).rvs((n,d_))
Y = f(X_proxy) # <- this is our target

Run the inference algorithm

We can now run the backward inference procedure.

Step 1: Bound the input space

Define bounds of the input space where it is expected the indirect observations to be placed.

Clues may come from the physics of the problem under study.

x_lo, x_hi = d_*[-10], d_*[10]

Step 2: Cover the input space with evenly spaces samples

Ideally these samples are generated using a low-discrepancy sampling scheme.

We'll use 100 000 samples for this example.

ux = uniform(x_lo, x_hi, N=100_000)
uy.shape # prints (100000,3)

Step 3: Evaluate the model on the coverage samples

This step is the most computationally expensive, and should be done offline and if possible and needed in parallel.

Luckily this evaluation depends only on the bounds (previous step) and need not be repeated if the bounds don't change or the model doesn't change.

uy = f(ux)
uy.shape # prints (100000,2)

Step 4: Compute data depth of $Y$

In practice, we run the forward data-peeling algorithm for $Y$, subindexing the coverage samples in the output space.

a,b,c = data_peeling_backward(uy,Y,tol=1e-1)
# a: a list of subindices corresponding to the support vectors
# b: a list of enclosing sets (boxes by default)
# c: a list of masks indicating the coverage samples belonging to each set

Step 5: Compute lower probability measure and create structure

We'll use scenario theory to compute a lower probability measure for each enclosing set.

The data depth i.e. the number of levels is l = len(a) = len(b) = len(c).

fy,p = peeling_to_structure(a,b,kind='scenario',beta=0.01)
# fy: a structure containing projections (fuzzy structure)
# p: a list of lower probability, one for each level

fy.shape  # prints: (26,2,2)

Step 6: Obtain marginal structures (fuzzy numbers) by projecting the coverage samples

This steps builds the marginal fuzzy structures of the inderect observations.

fx = samples_to_fuzzy_projection(ux,c)
# fy: a structure containing projections of the original multivariate structure in the input space

fx.shape # prints: (26,3,2)

Plotting

plot_fuzzy(fx,p=p,grid=True,figsize=(12,7))

png

plot_peeling_nxd(Y,a,b,p=p,figsize=(9,9),grid=False,label='Y')

png

plot_peeling_nxd_back(ux,c,p=p,baseline_alpha=0.9,figsize=(12,12))

png

Owner
Marco
Postdoc in Engineering @ Uni of Liverpool.
Marco
Heterogeneous Temporal Graph Neural Network

Heterogeneous Temporal Graph Neural Network This repository contains the datasets and source code of HTGNN. run_mag.ipynb is the training and testing

15 Dec 22, 2022
Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Yu Bai 43 Nov 07, 2022
Cmsc11 arcade - Final Project for CMSC11

cmsc11_arcade Final Project for CMSC11 Developers: Limson, Mark Vincent Peñafiel

Gregory 1 Jan 18, 2022
Article Reranking by Memory-enhanced Key Sentence Matching for Detecting Previously Fact-checked Claims.

MTM This is the official repository of the paper: Article Reranking by Memory-enhanced Key Sentence Matching for Detecting Previously Fact-checked Cla

ICTMCG 13 Sep 17, 2022
yolov5 deepsort 行人 车辆 跟踪 检测 计数

yolov5 deepsort 行人 车辆 跟踪 检测 计数 实现了 出/入 分别计数。 默认是 南/北 方向检测,若要检测不同位置和方向,可在 main.py 文件第13行和21行,修改2个polygon的点。 默认检测类别:行人、自行车、小汽车、摩托车、公交车、卡车。 检测类别可在 detect

554 Dec 30, 2022
State-to-Distribution (STD) Model

State-to-Distribution (STD) Model In this repository we provide exemplary code on how to construct and evaluate a state-to-distribution (STD) model fo

<a href=[email protected]"> 2 Apr 07, 2022
Code for "ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on", accepted at WACV 2021 Generation of Human Behavior Workshop.

ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on [ Paper ] [ Project Page ] This repository contains the code fo

Andrew Jong 97 Dec 13, 2022
SARS-Cov-2 Recombinant Finder for fasta sequences

Sc2rf - SARS-Cov-2 Recombinant Finder Pronounced: Scarf What's this? Sc2rf can search genome sequences of SARS-CoV-2 for potential recombinants - new

Lena Schimmel 41 Oct 03, 2022
Zero-shot Learning by Generating Task-specific Adapters

Code for "Zero-shot Learning by Generating Task-specific Adapters" This is the repository containing code for "Zero-shot Learning by Generating Task-s

INK Lab @ USC 11 Dec 17, 2021
LUKE -- Language Understanding with Knowledge-based Embeddings

LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transf

Studio Ousia 587 Dec 30, 2022
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region. This repository provides the codebase and dataset for our work WORD: Revisiting Or

Healthcare Intelligence Laboratory 71 Jan 07, 2023
Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Bae, Gwangbin 95 Jan 04, 2023
Meli Data Challenge 2021 - First Place Solution

My solution for the Meli Data Challenge 2021

Matias Moreyra 23 Mar 09, 2022
TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision

TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{you2019torchcv, author = {Ansheng You and Xiangtai Li and Zhen Zhu a

Donny You 2.2k Jan 06, 2023
Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

ImageProcessingTransformer Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

61 Jan 01, 2023
Where2Act: From Pixels to Actions for Articulated 3D Objects

Where2Act: From Pixels to Actions for Articulated 3D Objects The Proposed Where2Act Task. Given as input an articulated 3D object, we learn to propose

Kaichun Mo 69 Nov 28, 2022
Accuracy Aligned. Concise Implementation of Swin Transformer

Accuracy Aligned. Concise Implementation of Swin Transformer This repository contains the implementation of Swin Transformer, and the training codes o

FengWang 77 Dec 16, 2022
Pytorch implementation of the paper "Optimization as a Model for Few-Shot Learning"

Optimization as a Model for Few-Shot Learning This repo provides a Pytorch implementation for the Optimization as a Model for Few-Shot Learning paper.

Albert Berenguel Centeno 238 Jan 04, 2023
AI-based, context-driven network device ranking

Batea A batea is a large shallow pan of wood or iron traditionally used by gold prospectors for washing sand and gravel to recover gold nuggets. Batea

Secureworks Taegis VDR 269 Nov 26, 2022
Official PyTorch implementation of MAAD: A Model and Dataset for Attended Awareness

MAAD: A Model for Attended Awareness in Driving Install // Datasets // Training // Experiments // Analysis // License Official PyTorch implementation

7 Oct 16, 2022