Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression

Overview

Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression

We provide the code used in our paper "How Good are Low-Rank Approximations in Gaussian Process Regression?" to run experiments on the real-world datasets. The code includes implementation of Mercer GP (using dimensionality reduction) and Fourier GP. We also include the GPFlow code to run SGPR model.

Requirements

TensorFlow - version 2.1.0
TensorFlow Probability - version 0.9.0
GPflow - version 2.0.0 or newer
silence-tensorflow - version 1.1.1 (optional)

Flags

  • batch_size: Batch size for MGP (due to the included shallow neural network) (integer - default=2048)
  • num_epochs: Display loss function value every FLAGS.display_freq epochs (integer - default=100)
  • num_splits: Number of random data splits used - number of experiments run for a model (integer - default=1)
  • display_freq: Display loss function value every display_freq epochs (integer - default=10)
  • rank: Rank r for MGP, FGP, SGPR (integer - default=10)
  • d_mgp: Number of output dimensions for MGP's projection (integer - default=5)
  • dataset: Dataset name (string - available names=[elevators, protein, sarcos, 3droad] - default=elevators)

Source code

The following files can be found in the src directory :

  • models.py: implementation of MGP and FGP
  • helper.py: various utility functions
  • hermite_coeff.npy: a numpy array containing the Hermite polynomial coefficients needed for the DMGP model
  • run_experiments.py: code for running models MGP, FGP, and SGPR on the real-world datasets used in the paper

Examples

You can run the code with the configuration of your choice using the following command

# Train MGP, FGP, SGPR models over the Protein dataset and repeat experiments 5 times
# Set the number of epochs equal to 500 
# Print the values of the log-marginal likelihood every 5 epochs.
# The rank of the kernel approximation is chosen to be 50

python src/run_experiments.py --dataset=protein --display_freq=5 --num_splits=5 --rank=50

Owner
Aristeidis (Ares) Panos
I am a postdoctoral researcher in the Department of Statistics at the University of Warwick.
Aristeidis (Ares) Panos
202 Jan 06, 2023
Source code for paper "ATP: AMRize Than Parse! Enhancing AMR Parsing with PseudoAMRs" @NAACL-2022

ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs Hi this is the source code of our paper "ATP: AMRize Then Parse! Enhancing AMR Parsing w

Chen Liang 13 Nov 23, 2022
RGB-stacking πŸ›‘ 🟩 πŸ”· for robotic manipulation

RGB-stacking πŸ›‘ 🟩 πŸ”· for robotic manipulation BLOG | PAPER | VIDEO Beyond Pick-and-Place: Tackling Robotic Stacking of Diverse Shapes, Alex X. Lee*,

DeepMind 95 Dec 23, 2022
Classification of EEG data using Deep Learning

Graduation-Project Classification of EEG data using Deep Learning Epilepsy is the most common neurological disease in the world. Epilepsy occurs as a

Osman AlpaydΔ±n 5 Jun 24, 2022
BirdCLEF 2021 - Birdcall Identification 4th place solution

BirdCLEF 2021 - Birdcall Identification 4th place solution My solution detail kaggle discussion Inference Notebook (best submission) Environment Use K

tattaka 42 Jan 02, 2023
Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research

Megaverse Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research. The efficient design of the engine enables ph

Aleksei Petrenko 191 Dec 23, 2022
Implementation for paper LadderNet: Multi-path networks based on U-Net for medical image segmentation

Implementation for paper LadderNet: Multi-path networks based on U-Net for medical image segmentation This implementation is based on orobix implement

Juntang Zhuang 116 Sep 06, 2022
A Simple Long-Tailed Rocognition Baseline via Vision-Language Model

BALLAD This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model. Requirements Python3 Pytorch(1.7.

Teli Ma 4 Jan 20, 2022
Download from Onlyfans.com.

OnlySave: Onlyfans downloader Getting Started: Download the setup executable from the latest release. Install and run. Only works on Windows currently

4 May 30, 2022
Adversarial Graph Augmentation to Improve Graph Contrastive Learning

ADGCL : Adversarial Graph Augmentation to Improve Graph Contrastive Learning Introduction This repo contains the Pytorch [1] implementation of Adversa

susheel suresh 62 Nov 19, 2022
A framework for multi-step probabilistic time-series/demand forecasting models

JointDemandForecasting.py A framework for multi-step probabilistic time-series/demand forecasting models File stucture JointDemandForecasting contains

Stanford Intelligent Systems Laboratory 3 Sep 28, 2022
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Jan 01, 2023
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Fisher Induced Sparse uncHanging (FISH) Mask This repo contains the code for Fisher Induced Sparse uncHanging (FISH) Mask training, from "Training Neu

Varun Nair 37 Dec 30, 2022
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023
A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

Segnet is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This is implementation of http://arxiv.org/pdf/15

Pradyumna Reddy Chinthala 190 Dec 15, 2022
Fast, flexible and easy to use probabilistic modelling in Python.

Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic

Jacob Schreiber 3k Dec 29, 2022
A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualization

Website, Tutorials, and Docs    Uncertainty Toolbox A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualizatio

Uncertainty Toolbox 1.4k Dec 28, 2022
10x faster matrix and vector operations

Bolt is an algorithm for compressing vectors of real-valued data and running mathematical operations directly on the compressed representations. If yo

2.3k Jan 09, 2023
This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark

SILG This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark. If you find this work helpful, please cons

Victor Zhong 17 Nov 27, 2022
Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper]

Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper] Downloads [Downloads] Trained ckpt files for NYU Depth V2 and

98 Jan 01, 2023