Automatic caption evaluation metric based on typicality analysis.

Related tags

Deep LearningSMURF
Overview

SeMantic and linguistic UndeRstanding Fusion (SMURF)

made-with-python License: MIT

Automatic caption evaluation metric described in the paper "SMURF: SeMantic and linguistic UndeRstanding Fusion for Caption Evaluation via Typicality Analysis" (ACL 2021).

arXiv: https://arxiv.org/abs/2106.01444

ACL Anthology: https://aclanthology.org/2021.acl-long.175/

Overview

SMURF is an automatic caption evaluation metric that combines a novel semantic evaluation algorithm (SPARCS) and novel fluency evaluation algorithms (SPURTS and MIMA) for both caption-level and system-level analysis. These evaluations were developed to be generalizable and as a result demonstrate a high correlation with human judgment across many relevant datasets. See paper for more details.

Requirements

You can run requirements/install.sh to quickly install all the requirements in an Anaconda environment. The requirements are:

  • python 3
  • torch>=1.0.0
  • numpy
  • nltk>=3.5.0
  • pandas>=1.0.1
  • matplotlib
  • transformers>=3.0.0
  • shapely
  • sklearn
  • sentencepiece

Usage

./smurf_example.py provides working examples of the following functions:

Caption-Level Scoring

Returns a dictionary with scores for semantic similarity between reference captions and candidate captions (SPARCS), style/diction quality of candidate text (SPURTS), grammar outlier penalty of candidate text (MIMA), and the fusion of these scores (SMURF). Input sentences should be preprocessed before being fed into the smurf_eval_captions object as shown in the example. Evaluations with SPARCS require a list of reference sentences while evaluations with SPURTS and MIMA do not use reference sentences.

System-Level Analysis

After reading in and standardizing caption-level scores, generates a plot that can be used to give an overall evaluation of captioner performances along with relevant system-level scores (intersection with reference captioner and total grammar outlier penalties) for each captioner. An example of such a plot is shown below:

The number of captioners you are comparing should be specified when instantiating a smurf_system_analysis object. In order to generate the plot correctly, the captions fed into the caption-level scoring for each candidate captioner (C1, C2,...) should be organized in the following format with the C1 captioner as the ground truth:

[C1 image 1 output, C2 image 1 output,..., C1 image 2 output, C2 image 2 output,...].

Author/Maintainer:

Joshua Feinglass (https://scholar.google.com/citations?user=V2h3z7oAAAAJ&hl=en)

If you find this repo useful, please cite:

@inproceedings{feinglass2021smurf,
  title={SMURF: SeMantic and linguistic UndeRstanding Fusion for Caption Evaluation via Typicality Analysis},
  author={Joshua Feinglass and Yezhou Yang},
  booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
  year={2021},
  url={https://aclanthology.org/2021.acl-long.175/}
}
Owner
Joshua Feinglass
Joshua Feinglass
Lacmus is a cross-platform application that helps to find people who are lost in the forest using computer vision and neural networks.

lacmus The program for searching through photos from the air of lost people in the forest using Retina Net neural nwtwork. The project is being develo

Lacmus Foundation 168 Dec 27, 2022
Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems

Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems This repository is the official implementation of Rever

6 Aug 25, 2022
Alex Pashevich 62 Dec 24, 2022
My implementation of Fully Convolutional Neural Networks in Keras

Keras-FCN This repository contains my implementation of Fully Convolutional Networks in Keras (Tensorflow backend). Currently, semantic segmentation c

The Duy Nguyen 15 Jan 13, 2020
Anomaly detection analysis and labeling tool, specifically for multiple time series (one time series per category)

taganomaly Anomaly detection labeling tool, specifically for multiple time series (one time series per category). Taganomaly is a tool for creating la

Microsoft 272 Dec 17, 2022
Curating a dataset for bioimage transfer learning

CytoImageNet A large-scale pretraining dataset for bioimage transfer learning. Motivation In past few decades, the increase in speed of data collectio

Stanley Z. Hua 9 Jun 20, 2022
🧑‍🔬 verify your TEAL program by experiment and observation

Graviton - Testing TEAL with Dry Runs Tutorial Local Installation The following instructions assume that you have make available in your local environ

Algorand 18 Jan 03, 2023
Code for "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection", ICRA 2021

FGR This repository contains the python implementation for paper "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection"(I

Yi Wei 31 Dec 08, 2022
Implementation for the "Surface Reconstruction from 3D Line Segments" paper.

Surface Reconstruction from 3D Line Segments Surface reconstruction from 3d line segments. Langlois, P. A., Boulch, A., & Marlet, R. In 2019 Internati

85 Jan 04, 2023
交互式标注软件,暂定名 iann

iann 交互式标注软件,暂定名iann。 安装 按照官网介绍安装paddle。 安装其他依赖 pip install -r requirements.txt 运行 git clone https://github.com/PaddleCV-SIG/iann/ cd iann python iann

294 Dec 30, 2022
Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model

Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model About This repository contains the code to replicate the syn

Haruka Kiyohara 12 Dec 07, 2022
Codes for 'Dual Parameterization of Sparse Variational Gaussian Processes'

Dual Parameterization of Sparse Variational Gaussian Processes Documentation | Notebooks | API reference Introduction This repository is the official

AaltoML 7 Dec 23, 2022
Share a benchmark that can easily apply reinforcement learning in Job-shop-scheduling

Gymjsp Gymjsp is an open source Python library, which uses the OpenAI Gym interface for easily instantiating and interacting with RL environments, and

134 Dec 08, 2022
code for paper "Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning" by Zhongzheng Ren*, Raymond A. Yeh*, Alexander G. Schwing.

Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning Overview This code is for paper: Not All Unlabeled Data are Equa

Jason Ren 22 Nov 23, 2022
Source code of our BMVC 2021 paper: AniFormer: Data-driven 3D Animation with Transformer

AniFormer This is the PyTorch implementation of our BMVC 2021 paper AniFormer: Data-driven 3D Animation with Transformer. Haoyu Chen, Hao Tang, Nicu S

24 Nov 02, 2022
Transformer model implemented with Pytorch

transformer-pytorch Transformer model implemented with Pytorch Attention is all you need-[Paper] Architecture Self-Attention self_attention.py class

Mingu Kang 12 Sep 03, 2022
[CVPR 2021] Counterfactual VQA: A Cause-Effect Look at Language Bias

Counterfactual VQA (CF-VQA) This repository is the Pytorch implementation of our paper "Counterfactual VQA: A Cause-Effect Look at Language Bias" in C

Yulei Niu 94 Dec 03, 2022
Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery"

SegSwap Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery" [PDF] [Project page] If our project

xshen 41 Dec 10, 2022
A fast and easy to use, moddable, Python based Minecraft server!

PyMine PyMine - The fastest, easiest to use, Python-based Minecraft Server! Features Note: This list is not always up to date, and doesn't contain all

PyMine 144 Dec 30, 2022
Depression Asisstant GDSC Challenge Solution

Depression Asisstant can help you give solution. Please using Python version 3.9.5 for contribute.

Ananda Rauf 1 Jan 30, 2022