Official Pytorch implementation of 6DRepNet: 6D Rotation representation for unconstrained head pose estimation.

Overview

PWC PWC Hugging Face Spaces

6D Rotation Representation for Unconstrained Head Pose Estimation (Pytorch)

animated

Paper

Thorsten Hempel and Ahmed A. Abdelrahman and Ayoub Al-Hamadi, "6D Rotation Representation for Unconstrained Head Pose Estimation", submitted to ICIP 2022. [ResearchGate][Arxiv]

Abstract

In this paper, we present a method for unconstrained end-to-end head pose estimation. We address the problem of ambiguous rotation labels by introducing the rotation matrix formalism for our ground truth data and propose a continuous 6D rotation matrix representation for efficient and robust direct regression. This way, our method can learn the full rotation appearance which is contrary to previous approaches that restrict the pose prediction to a narrow-angle for satisfactory results. In addition, we propose a geodesic distance-based loss to penalize our network with respect to the manifold geometry. Experiments on the public AFLW2000 and BIWI datasets demonstrate that our proposed method significantly outperforms other state-of-the-art methods by up to 20%.


Trained on 300W-LP, Test on AFLW2000 and BIWI

Full Range Yaw Pitch Roll MAE Yaw Pitch Roll MAE
HopeNet ( =2) N 6.47 6.56 5.44 6.16 5.17 6.98 3.39 5.18
HopeNet ( =1) N 6.92 6.64 5.67 6.41 4.81 6.61 3.27 4.90
FSA-Net N 4.50 6.08 4.64 5.07 4.27 4.96 2.76 4.00
HPE N 4.80 6.18 4.87 5.28 3.12 5.18 4.57 4.29
QuatNet N 3.97 5.62 3.92 4.50 2.94 5.49 4.01 4.15
WHENet-V N 4.44 5.75 4.31 4.83 3.60 4.10 2.73 3.48
WHENet Y/N 5.11 6.24 4.92 5.42 3.99 4.39 3.06 3.81
TriNet Y 4.04 5.77 4.20 4.67 4.11 4.76 3.05 3.97
FDN N 3.78 5.61 3.88 4.42 4.52 4.70 2.56 3.93
6DRepNet Y 3.63 4.91 3.37 3.97 3.24 4.48 2.68 3.47

BIWI 70/30

Yaw Pitch Roll MAE
HopeNet ( =1) 3.29 3.39 3.00 3.23
FSA-Net 2.89 4.29 3.60 3.60
TriNet 2.93 3.04 2.44 2.80
FDN 3.00 3.98 2.88 3.29
6DRepNet 2.69 2.92 2.36 2.66

Fine-tuned Models

Fine-tuned models can be download from here: https://drive.google.com/drive/folders/1V1pCV0BEW3mD-B9MogGrz_P91UhTtuE_?usp=sharing

Quick Start:

git clone https://github.com/thohemp/6DRepNet
cd 6DRepNet

Set up a virtual environment:

python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt  # Install required packages

In order to run the demo scripts you need to install the face detector

pip install git+https://github.com/elliottzheng/[email protected]

Camera Demo:

python demo.py  --snapshot 6DRepNet_300W_LP_AFLW2000.pth \
                --cam 0

Test/Train 3DRepNet

Preparing datasets

Download datasets:

  • 300W-LP, AFLW2000 from here.

  • BIWI (Biwi Kinect Head Pose Database) from here

Store them in the datasets directory.

For 300W-LP and AFLW2000 we need to create a filenamelist.

python create_filename_list.py --root_dir datasets/300W_LP

The BIWI datasets needs be preprocessed by a face detector to cut out the faces from the images. You can use the script provided here. For 7:3 splitting of the BIWI dataset you can use the equivalent script here. We set the cropped image size to 256.

Testing:

python test.py  --batch_size 64 \
                --dataset ALFW2000 \
                --data_dir datasets/AFLW2000 \
                --filename_list datasets/AFLW2000/files.txt \
                --snapshot output/snapshots/1.pth \
                --show_viz False 

Training

Download pre-trained RepVGG model 'RepVGG-B1g2-train.pth' from here and save it in the root directory.

python train.py --batch_size 64 \
                --num_epochs 30 \
                --lr 0.00001 \
                --dataset Pose_300W_LP \
                --data_dir datasets/300W_LP \
                --filename_list datasets/300W_LP/files.txt

Deploy models

For reparameterization the trained models into inference-models use the convert script.

python convert.py input-model.tar output-model.pth

Inference-models are loaded with the flag deploy=True.

model = SixDRepNet(backbone_name='RepVGG-B1g2',
                    backbone_file='',
                    deploy=True,
                    pretrained=False)

Citing

If you find our work useful, please cite the paper:

@misc{hempel20226d,
      title={6D Rotation Representation For Unconstrained Head Pose Estimation}, 
      author={Thorsten Hempel and Ahmed A. Abdelrahman and Ayoub Al-Hamadi},
      year={2022},
      eprint={2202.12555},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Thorsten Hempel
Computer Vision, Robotics
Thorsten Hempel
[CVPR 2021] Official PyTorch Implementation for "Iterative Filter Adaptive Network for Single Image Defocus Deblurring"

IFAN: Iterative Filter Adaptive Network for Single Image Defocus Deblurring Checkout for the demo (GUI/Google Colab)! The GUI version might occasional

Junyong Lee 173 Dec 30, 2022
Fully Convlutional Neural Networks for state-of-the-art time series classification

Deep Learning for Time Series Classification As the simplest type of time series data, univariate time series provides a reasonably good starting poin

Stephen 572 Dec 23, 2022
Application of K-means algorithm on a music dataset after a dimensionality reduction with PCA

PCA for dimensionality reduction combined with Kmeans Goal The Goal of this notebook is to apply a dimensionality reduction on a big dataset in order

Arturo Ghinassi 0 Sep 17, 2022
With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function

With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function. At the momen

ChemEngAI 40 Dec 27, 2022
PyTorch Implementation of Region Similarity Representation Learning (ReSim)

ReSim This repository provides the PyTorch implementation of Region Similarity Representation Learning (ReSim) described in this paper: @Article{xiao2

Tete Xiao 74 Jan 03, 2023
Computer Vision application in the web

Computer Vision application in the web Preview Usage Clone this repo git clone https://github.com/amineHY/WebApp-Computer-Vision-streamlit.git cd Web

Amine Hadj-Youcef. PhD 35 Dec 06, 2022
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Chao Ma 3k Jan 03, 2023
An example of Scatterbrain implementation (combining local attention and Performer)

An example of Scatterbrain implementation (combining local attention and Performer)

HazyResearch 97 Jan 02, 2023
Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds."

DeltaConv [Paper] [Project page] Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds" by Ru

98 Nov 26, 2022
QT Py Media Knob using rotary encoder & neopixel ring

QTPy-Knob QT Py USB Media Knob using rotary encoder & neopixel ring The QTPy-Knob features: Media knob for volume up/down/mute with "qtpy-knob.py" Cir

Tod E. Kurt 56 Dec 30, 2022
Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network."

R2RNet Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network." Jiang Hai, Zhu Xuan, Ren Yang, Yutong Hao, Fengzhu

77 Dec 24, 2022
Evaluation and Benchmarking of Speech Super-resolution Methods

Speech Super-resolution Evaluation and Benchmarking What this repo do: A toolbox for the evaluation of speech super-resolution algorithms. Unify the e

Haohe Liu (刘濠赫) 84 Dec 20, 2022
An open-source online reverse dictionary.

An open-source online reverse dictionary.

THUNLP 6.3k Jan 09, 2023
Builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques

This project builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques.

20 Dec 30, 2022
A Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Training Data》

RangeLoss Pytorch This is a Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Trai

Youzhi Gu 7 Nov 27, 2021
Code for BMVC2021 paper "Boundary Guided Context Aggregation for Semantic Segmentation"

Boundary-Guided-Context-Aggregation Boundary Guided Context Aggregation for Semantic Segmentation Haoxiang Ma, Hongyu Yang, Di Huang In BMVC'2021 Pape

Haoxiang Ma 31 Jan 08, 2023
Animate molecular orbital transitions using Psi4 and Blender

Molecular Orbital Transitions (MOT) Animate molecular orbital transitions using Psi4 and Blender Author: Maximilian Paradiz Dominguez, University of A

3 Feb 01, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Libo Qin 25 Sep 06, 2022
maximal update parametrization (µP)

Maximal Update Parametrization (μP) and Hyperparameter Transfer (μTransfer) Paper link | Blog link In Tensor Programs V: Tuning Large Neural Networks

Microsoft 694 Jan 03, 2023
PyTorch Implementation of the paper Learning to Reweight Examples for Robust Deep Learning

Learning to Reweight Examples for Robust Deep Learning Unofficial PyTorch implementation of Learning to Reweight Examples for Robust Deep Learning. Th

Daniel Stanley Tan 325 Dec 28, 2022