Api for getting bin info and getting encrypted card details for adyen.

Overview

Bin Info And Adyen Cse Enc Python

api for getting bin info and getting encrypted card details for adyen.

GitHub stars GitHub forks Maintenance Website shields.io Ask Me Anything ! License

Installation

Local Installation

git clone http://www.github.com/r0ld3x/adyen-enc-and-bin-info
cd adyen-enc-and-bin-info
pip install -r requirements.txt
uvicorn index:app

Deploy

Usage

website.com = your heroku website name

BIN INFO:-

curl -X 'GET' \
  'https://adyen-enc-and-bin-info.herokuapp.com/bin/458578' \
  -H 'accept: application/json'

Request URL: https://adyen-enc-and-bin-info.herokuapp.com/bin/458578 Return:

{
  "bin": "458578",
  "bank": "PJSC CB EUROBANK",
  "country_iso": "UA",
  "country": "UA",
  "flag": "🇺🇦",
  "vendor": "VISA",
  "type": "DEBIT",
  "level": "CLASSIC",
  "prepaid": false
}

Return status code 200 if success else return 404 if bin not found

ADYEN ENC:-

curl -X 'POST' \
  'https://adyen-enc-and-bin-info.herokuapp.com/adyen/' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "card": 5415900002240330,
  "month":7,
  "year": 2024,
  "cvv": 544,
  "adyen_key": "10001|E9DB107F38F77A23A8822CB39CDA57D971F8CA05D91C5EAA3B621F7E0CFD3E8A2C877AD39DBA8C9189EA5820EEC8483A9069BA005964200FD5FB8EFEE6F5E232EDA7915538BEB30D7F5B8FC5A12337B1E05A168760183E599571F8B43E79CCD3223C666A1FA234D2174092852D86BF751CBAAB18DD9B829B489CB43F16B3D1C70191AA12045CFFEC049030801A3891B56A43D2E6CD634E4DC403CA922D44B43498244E13BA90B6D083F5BDCF1D8D41A34B2B46D28ACBD634DD25A5037F53D8911A57D11292FB9E388C6F3A66DCB218FDC12B4EDF12F1EC130ED2423882FEF9ADAD6E27620D26CCA117BFBE2D7501BD45FDF8ED2A433A42C298A9A07B34D73CB5",
  "adyen_version": "_0_1_25"
}'

Request URL: https://adyen-enc-and-bin-info.herokuapp.com/bin/458578 Return:

{
  "card": "adyenjs_0_1_25%24pd91Sl9SF1eTx%2BZrn3b9uL8dh%2BmO6HJrNQsf%2BmQ%2F2185qXMACyys4OCwKEpeBuT9j4%2FdLCfqeVGS0gdRIZRKDLvO689pTqvFnJ1tTiXwEEYkvCJ73bSGjPzPNexi%2FWo3KmoiAPWLwHWf514AKSCb1luoztp%2BZKxpg6IuqwQR%2FtsFBkrq761AQw6TwMtMxSr%2Fzs%2Fl6WjkTOBv5GviiKKHjOCpr1Y5eMv6t%2F9cjuDIYF9AWNx4F9o4qraNeAKl%2BVjs%2Fpm9aFV16QeYWpvjO24Rpb865V6%2BgQJW%2F8I8jRbpy6wlS3Mo%2FOSUBrOZqcrw8GBn8Qtf8q74kUXRdhtywGQ%2Bgg%3D%3D%2465MDJ9nl42hYDvxIYIow9ydXvjc3HPHXZFziT8yCuulYjzpQU7QXPJcev0eP35n5k5KIRbep5zxVX6ZX3n8saXsWwwKiZhonmtPbzSmc6T262Zc%2FJmW8K6mofH7qyteM",
  "month": "adyenjs_0_1_25%24lpdea4MvYqJm4YRdufTpwKGiem3UqLHia4kJ0Q5rb6uvNyKlL9J18M9HPYH%2F3Y37lbmPIgMmGNCYoK5%2BaTj5uquRtQ1njRP55T%2F6EudhpIQMKYaw4M6gQjdIrqosVplnps%2FD%2BnmuwHJM0DWIzZC8z30ZCz4Sl6RFBL3DPj0OhvjR9MvoAUwOHqJYc%2FF9zmtTq8vA5XCYAhVisBiqX7fj547almWBEcthyYw6LEg3BYMcs4MdJahEwUa17zDDKwLlLhvkI3m0qsDc8cTFjmYtnTsxVVSEttbUe0ljQJfVrRRPtcMGHNSA5JzWGf5mMfevjciQeAXRVFolIG6283qUnw%3D%3D%24%2FjDUAJFl4B1563Tw2p76GjeHnz03b0jhFrINlCYln1v81Omn4BbnEGnp7dzD3dpx6krXpg0P%2FCq1i1lEnG4B1v1texUPMUZ9%2Bm6AT0QUI3u%2BeuJ%2BxDs%3D",
  "year": "adyenjs_0_1_25%24btmuqQyBocIYHkfdrzowdn5EeJMsrmMcbSUX6DtlOA4Gu%2BlrNunyCwsovndkApfE6A9PYTCrsqUkJ%2F4iDizHkX4Ri%2FY24UfGjUzDbUjyHzhlM3f3ktgU4afyPT3Nb%2FoMf7gbreBJApdbxxh4Zz5jh%2BOb2znoEMM0MgoQ0HTVDy7CkNEKtbYxA72g1rz32lVJHlnTE7Urd2NkQVR5j6Js9PVkNfwRLiUUnZJN6p68WcShP0nUiptciJnMiP%2F3W6LgsQ9rS9PKCxcySSqXaW2ncgXX2pRgmCLjzR6yHKClzrcc%2BUqQ6D6br7vbACXv8OO877JGZVJp9lEqJ1tyQAZBnA%3D%3D%24s%2BlEPjpYoMMZIH8%2B75KqLOkCnKvajNHrNuEq8YmvCT3nw42cRQOASN5Xd34hWbdStKXQNfOVfD0RT64ebbXLJoHSvgB5nnwwB4Ps4n2aPWXbbK8789fY8w%3D%3D",
  "cvv": "adyenjs_0_1_25%24pwHRvu2ys6zXTUaabbjtXW6kZGZhojK1WoxqSFxkO44vvRZUzaIzWwost4mRvyaTE%2F%2FXv%2FSanWXPW4vCPJzqred%2F2atsz%2FzYuNBbUT9C1%2Bga9rgX7gXKRujS5lZFf18QXlG%2BBDERhtav1CuxbsMTmyaa4QLJ9BwohZgDHvEZW%2BOThw2yQTi5GlgwauTJbiw%2BCYgzKEqk24yeUSLQGKz4yD0R2wvILFJaWzV%2B0NBnMQ8ZWEdtTRL2PY%2BHHb9uwTMBJKcdZn7qDWGT6Acxjh4HMLaI5%2FkgCch6JRsUEq63L6ulqcw6kDYGCaCZ%2BFvPmPssNFzJK6IpX%2F%2BKESxfGPBIRQ%3D%3D%246WruUcmWAV4a2Ve3SKzjTx1usXSSIf3RiZxZkdMly%2Fc97CWO5pRsMiXGUlZyB8KKctoM0iiMacnPcPN%2F%2B1Iamw8z1xriaPCdeCuGCqwGx1o%3D"
}

Return enc_card,enc_month,enc_year,enc_cvv

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

Please make sure to update tests as appropriate.

• MADE BY > Roldex

License

MIT

Owner
Roldex Stark
BEYOND YOUR LIMITS
Roldex Stark
Denoising images with Fourier Ring Correlation loss

Denoising images with Fourier Ring Correlation loss The python code accompanies the working manuscript Image quality measurements and denoising using

2 Mar 12, 2022
Trafffic prediction analysis using hybrid models - Machine Learning

Hybrid Machine learning Model Clone the Repository Create a new Directory as assests and download the model from the below link Model Link To Start th

1 Feb 08, 2022
Multiple custom object count and detection using YOLOv3-Tiny method

Electronic-Component-YOLOv3 Introduce This project created to detect, count, and recognize multiple custom object using YOLOv3-Tiny method. The target

Derwin Mahardika 2 Nov 14, 2022
Train Yolov4 using NBX-Jobs

yolov4-trainer-nbox Train Yolov4 using NBX-Jobs. Use the powerfull functionality available in nbox-SDK repo to train a tiny-Yolo v4 model on Pascal VO

Yash Bonde 1 Jan 12, 2022
Tutorial in Python targeted at Epidemiologists. Will discuss the basics of analysis in Python 3

Python-for-Epidemiologists This repository is an introduction to epidemiology analyses in Python. Additionally, the tutorials for my library zEpid are

Paul Zivich 120 Nov 17, 2022
Image inpainting using Gaussian Mixture Models

dmfa_inpainting Source code for: MisConv: Convolutional Neural Networks for Missing Data (to be published at WACV 2022) Estimating conditional density

Marcin Przewięźlikowski 8 Oct 09, 2022
The official code repository for examples in the O'Reilly book 'Generative Deep Learning'

Generative Deep Learning Teaching Machines to paint, write, compose and play The official code repository for examples in the O'Reilly book 'Generativ

David Foster 1.3k Dec 29, 2022
WiFi-based Multi-task Sensing

WiFi-based Multi-task Sensing Introduction WiFi-based sensing has aroused immense attention as numerous studies have made significant advances over re

zhangx289 6 Nov 24, 2022
This project provides a stock market environment using OpenGym with Deep Q-learning and Policy Gradient.

Stock Trading Market OpenAI Gym Environment with Deep Reinforcement Learning using Keras Overview This project provides a general environment for stoc

Kim, Ki Hyun 769 Dec 25, 2022
A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen.

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL"

Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL" This is the official codebase for Pessimism Meets I

3 Sep 19, 2022
Source code for "MusCaps: Generating Captions for Music Audio" (IJCNN 2021)

MusCaps: Generating Captions for Music Audio Ilaria Manco1 2, Emmanouil Benetos1, Elio Quinton2, Gyorgy Fazekas1 1 Queen Mary University of London, 2

Ilaria Manco 57 Dec 07, 2022
An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" in Pytorch.

GLOM An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" for MNIST Dataset. To understand this

50 Oct 19, 2022
The Official Implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose [NIPS 2021].

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The offical PyTorch implementation of Neural View Sy

Angtian Wang 20 Oct 09, 2022
This project uses ViT to perform image classification tasks on DATA set CIFAR10.

Vision-Transformer-Multiprocess-DistributedDataParallel-Apex Introduction This project uses ViT to perform image classification tasks on DATA set CIFA

Kaicheng Yang 3 Jun 03, 2022
Towards uncontrained hand-object reconstruction from RGB videos

Towards uncontrained hand-object reconstruction from RGB videos Yana Hasson, Gül Varol, Ivan Laptev and Cordelia Schmid Project page Paper Table of Co

Yana 69 Dec 27, 2022
Code for paper "Vocabulary Learning via Optimal Transport for Neural Machine Translation"

**Codebase and data are uploaded in progress. ** VOLT(-py) is a vocabulary learning codebase that allows researchers and developers to automaticaly ge

416 Jan 09, 2023
Code for our paper "Graph Pre-training for AMR Parsing and Generation" in ACL2022

AMRBART An implementation for ACL2022 paper "Graph Pre-training for AMR Parsing and Generation". You may find our paper here (Arxiv). Requirements pyt

xfbai 60 Jan 03, 2023
Code for Robust Contrastive Learning against Noisy Views

Robust Contrastive Learning against Noisy Views This repository provides a PyTorch implementation of the Robust InfoNCE loss proposed in paper Robust

Ching-Yao Chuang 53 Jan 08, 2023
Implementation of Monocular Direct Sparse Localization in a Prior 3D Surfel Map (DSL)

DSL Project page: https://sites.google.com/view/dsl-ram-lab/ Monocular Direct Sparse Localization in a Prior 3D Surfel Map Authors: Haoyang Ye, Huaiya

Haoyang Ye 93 Nov 30, 2022