Code for the upcoming CVPR 2021 paper

Overview

The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth

Jamie Watson, Oisin Mac Aodha, Victor Prisacariu, Gabriel J. Brostow and Michael FirmanCVPR 2021

[Link to paper]

We introduce ManyDepth, an adaptive approach to dense depth estimation that can make use of sequence information at test time, when it is available.

  • Self-supervised: We train from monocular video only. No depths or poses are needed at training or test time.
  • Good depths from single frames; even better depths from short sequences.
  • Efficient: Only one forward pass at test time. No test-time optimization needed.
  • State-of-the-art self-supervised monocular-trained depth estimation on KITTI and CityScapes.

Overview

Cost volumes are commonly used for estimating depths from multiple input views:

Cost volume used for aggreagting sequences of frames

However, cost volumes do not easily work with self-supervised training.

Baseline: Depth from cost volume input without our contributions

In our paper, we:

  • Introduce an adaptive cost volume to deal with unknown scene scales
  • Fix problems with moving objects
  • Introduce augmentations to deal with static cameras and start-of-sequence frames

These contributions enable cost volumes to work with self-supervised training:

ManyDepth: Depth from cost volume input with our contributions

With our contributions, short test-time sequences give better predictions than methods which predict depth from just a single frame.

ManyDepth vs Monodepth2 depths and error maps

✏️ 📄 Citation

If you find our work useful or interesting, please cite our paper:

@inproceedings{watson2021temporal,
    author = {Jamie Watson and
              Oisin Mac Aodha and
              Victor Prisacariu and
              Gabriel Brostow and
              Michael Firman},
    title = {{The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth}},
    booktitle = {Computer Vision and Pattern Recognition (CVPR)},
    year = {2021}
}

📈 Results

Our ManyDepth method outperforms all previous methods in all subsections across most metrics, whether or not the baselines use multiple frames at test time. See our paper for full details.

KITTI results table

👀 Reproducing Paper Results

To recreate the results from our paper, run:

CUDA_VISIBLE_DEVICES=<your_desired_GPU> \
python -m manydepth.train \
    --data_path <your_KITTI_path> \
    --log_dir <your_save_path>  \
    --model_name <your_model_name>

Depending on the size of your GPU, you may need to set --batch_size to be lower than 12. Additionally you can train a high resolution model by adding --height 320 --width 1024.

For instructions on downloading the KITTI dataset, see Monodepth2

To train a CityScapes model, run:

CUDA_VISIBLE_DEVICES=<your_desired_GPU> \
python -m manydepth.train \
    --data_path <your_preprocessed_cityscapes_path> \
    --log_dir <your_save_path>  \
    --model_name <your_model_name> \
    --dataset cityscapes_preprocessed \
    --split cityscapes_preprocessed \
    --freeze_teacher_epoch 5 \
    --height 192 --width 512

This assumes you have already preprocessed the CityScapes dataset using SfMLearner's prepare_train_data.py script. We used the following command:

python prepare_train_data.py \
    --img_height 512 \
    --img_width 1024 \
    --dataset_dir <path_to_downloaded_cityscapes_data> \
    --dataset_name cityscapes \
    --dump_root <your_preprocessed_cityscapes_path> \
    --seq_length 3 \
    --num_threads 8

Note that while we use the --img_height 512 flag, the prepare_train_data.py script will save images which are 1024x384 as it also crops off the bottom portion of the image. You could probably save disk space without a loss of accuracy by preprocessing with --img_height 256 --img_width 512 (to create 512x192 images), but this isn't what we did for our experiments.

💾 Pretrained weights and evaluation

You can download weights for some pretrained models here:

To evaluate a model on KITTI, run:

CUDA_VISIBLE_DEVICES=<your_desired_GPU> \
python -m manydepth.evaluate_depth \
    --data_path <your_KITTI_path> \
    --load_weights_folder <your_model_path>
    --eval_mono

Make sure you have first run export_gt_depth.py to extract ground truth files.

And to evaluate a model on Cityscapes, run:

CUDA_VISIBLE_DEVICES=<your_desired_GPU> \
python -m manydepth.evaluate_depth \
    --data_path <your_cityscapes_path> \
    --load_weights_folder <your_model_path>
    --eval_mono \
    --eval_split cityscapes

During evaluation, we crop and evaluate on the middle 50% of the images.

We provide ground truth depth files HERE, which were converted from pixel disparities using intrinsics and the known baseline. Download this and unzip into splits/cityscapes.

🖼 Running on your own images

We provide some sample code in test_simple.py which demonstrates multi-frame inference. This predicts depth for a sequence of two images cropped from a dashcam video. Prediction also requires an estimate of the intrinsics matrix, in json format. For the provided test images, we have estimated the intrinsics to be equivalent to those of the KITTI dataset. Note that the intrinsics provided in the json file are expected to be in normalised coordinates.

Download and unzip model weights from one of the links above, and then run the following command:

python -m manydepth.test_simple \
    --target_image_path assets/test_sequence_target.jpg \
    --source_image_path assets/test_sequence_source.jpg \
    --intrinsics_json_path assets/test_sequence_intrinsics.json \
    --model_path path/to/weights

A predicted depth map rendering will be saved to assets/test_sequence_target_disp.jpeg.

👩‍⚖️ License

Copyright © Niantic, Inc. 2021. Patent Pending. All rights reserved. Please see the license file for terms.

Owner
Niantic Labs
Building technologies and ideas that move us
Niantic Labs
Pytorch implementation of Learning with Opponent-Learning Awareness

Pytorch implementation of Learning with Opponent-Learning Awareness using DiCE

Alexis David Jacq 82 Sep 15, 2022
Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

FPT_data_centric_competition - Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

Pham Viet Hoang (Harry) 2 Oct 30, 2022
AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition

AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition [ArXiv] [Project Page] This repository is the official implementation of AdaMML:

International Business Machines 43 Dec 26, 2022
A new data augmentation method for extreme lighting conditions.

Random Shadows and Highlights This repo has the source code for the paper: Random Shadows and Highlights: A new data augmentation method for extreme l

Osama Mazhar 35 Nov 26, 2022
Discover hidden deepweb pages

DeepWeb Scapper Att: Demo version An simple script to scrappe deepweb to find pages. Will return if any of those exists and will save on a file. You s

Héber Júlio 77 Oct 02, 2022
A Re-implementation of the paper "A Deep Learning Framework for Character Motion Synthesis and Editing"

What is This This is a simple re-implementation of the paper "A Deep Learning Framework for Character Motion Synthesis and Editing"(1). Only Sections

102 Dec 14, 2022
This program was designed to detect whether someone is wearing a facemask through a live video stream.

This program was designed to detect whether someone is wearing a facemask through a live video stream. A custom lightweight CNN trained with TensorFlow on a public dataset provided by Kaggle is used

0 Apr 02, 2022
[CVPR'21] Multi-Modal Fusion Transformer for End-to-End Autonomous Driving

TransFuser This repository contains the code for the CVPR 2021 paper Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. If you find our

695 Jan 05, 2023
dualFace: Two-Stage Drawing Guidance for Freehand Portrait Sketching (CVMJ)

dualFace dualFace: Two-Stage Drawing Guidance for Freehand Portrait Sketching (CVMJ) We provide python implementations for our CVM 2021 paper "dualFac

Haoran XIE 46 Nov 10, 2022
Roadmap to becoming a machine learning engineer in 2020

Roadmap to becoming a machine learning engineer in 2020, inspired by web-developer-roadmap.

Chris Hoyean Song 1.7k Dec 29, 2022
OCR Streamlit App is used to extract text from images using python's easyocr, pytorch and streamlit packages

OCR-Streamlit-App OCR Streamlit App is used to extract text from images using python's easyocr, pytorch and streamlit packages OCR app gets an image a

Siva Prakash 5 Apr 05, 2022
This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine

LSHTM_RCS This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine (LSHTM) in collabo

Lukas Kopecky 3 Jan 30, 2022
Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN)

Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN) This is the implementation of the paper Multi-Age

Future Power Networks 83 Jan 06, 2023
Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)

Cross-media Structured Common Space for Multimedia Event Extraction Table of Contents Overview Requirements Data Quickstart Citation Overview The code

Manling Li 49 Nov 21, 2022
A library for uncertainty quantification based on PyTorch

Torchuq [logo here] TorchUQ is an extensive library for uncertainty quantification (UQ) based on pytorch. TorchUQ currently supports 10 representation

TorchUQ 96 Dec 12, 2022
git《Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction》(ECCV 2020) GitHub:

Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction Code for the ECCV 2020 paper by Yiming Qian and Yasutaka Furukawa Getting

37 Dec 04, 2022
Combining Reinforcement Learning and Constraint Programming for Combinatorial Optimization

Hybrid solving process for combinatorial optimization problems Combinatorial optimization has found applications in numerous fields, from aerospace to

117 Dec 13, 2022
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
Combining Diverse Feature Priors

Combining Diverse Feature Priors This repository contains code for reproducing the results of our paper. Paper: https://arxiv.org/abs/2110.08220 Blog

Madry Lab 5 Nov 12, 2022
LRBoost is a scikit-learn compatible approach to performing linear residual based stacking/boosting.

LRBoost is a sckit-learn compatible package for linear residual boosting. LRBoost combines a linear estimator and a non-linear estimator to leverage t

Andrew Patton 5 Nov 23, 2022