[NeurIPS 2021] "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators"

Overview

G-PATE

This is the official code base for our NeurIPS 2021 paper:

"G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators."

Yunhui Long*, Boxin Wang*, Zhuolin Yang, Bhavya Kailkhura, Aston Zhang, Carl A. Gunter, Bo Li

Citation

@article{long2021gpate,
  title={G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators},
  author={Long, Yunhui and Wang, Boxin and Yang, Zhuolin and Kailkhura, Bhavya and Zhang, Aston and Gunter, Carl A. and Li, Bo},
  journal={NeurIPS 2021},
  year={2021}
}

Usage

Prepare your environment

Download required packages

pip install -r requirements.txt

Prepare your data

Please store the training data in $data_dir. By default, $data_dir is set to ../../data.

We provide a script to download the MNIST and Fashion Mnist datasets.

python download.py [dataset_name]

For MNIST, you can run

python download.py mnist

For Fashion-MNIST, you can run

python download.py fashion_mnist

For CelebA datasets, please refer to their official websites for downloading.

Training

python main.py --checkpoint_dir [checkpoint_dir] --dataset [dataset_name] --train

Example of one of our best commands on MNIST:

Given eps=1,

python main.py --checkpoint_dir mnist_teacher_4000_z_dim_50_c_1e-4/ --teachers_batch 40 --batch_teachers 100 --dataset mnist --train --sigma_thresh 3000 --sigma 1000 --step_size 1e-4 --max_eps 1 --nopretrain --z_dim 50 --batch_size 64

By default, after it reaches the max epsilon=1, it will generate 100,000 DP samples as eps-1.00.data.pkl in checkpoint_dir.

Given eps=10,

python main.py --checkpoint_dir mnist_teacher_2000_z_dim_100_eps_10/ --teachers_batch 40 --batch_teachers 50 --dataset mnist --train --sigma_thresh 600 --sigma 100 --step_size 1e-4 --max_eps 10 --nopretrain --z_dim 100 --batch_size 64

By default, after it reaches the max epsilon=10, it will generate 100,000 DP samples as eps-9.9x.data.pkl in checkpoint_dir.

Generating synthetic samples

python main.py --checkpoint_dir [checkpoint_dir] --dataset [dataset_name]

Evaluate the synthetic records

We follow the standard the protocl and train a classifier on synthetic samples and test it on real samples.

For MNIST,

python evaluation/train-classifier-mnist.py --data [DP_data_dir]

For Fashion-MNIST,

python evaluation/train-classifier-fmnist.py --data [DP_data_dir]

For CelebA-Gender,

python evaluation/train-classifier-celebA.py --data [DP_data_dir]

For CelebA-Gender (Small),

python evaluation/train-classifier-small-celebA.py --data [DP_data_dir]

For CelebA-Hair,

python evaluation/train-classifier-hair.py --data [DP_data_dir]

The [DP_data_dir] is where your generated DP samples are located.

In the MNIST example above, we have generated DP samples in $checkpoint_dir/eps-1.00.data.

During evaluation, you should run with DP_data_dir=$checkpoint_dir/eps-1.00.data.

python evaluation/train-classifier-mnist.py --data $checkpoint_dir/eps-1.00.data
Owner
AI Secure
UIUC Secure Learning Lab
AI Secure
Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21.

Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21. We optimized wind turbine placement in a wind farm, subject to wake effects, using Q-learni

Manasi Sharma 2 Sep 27, 2022
Small repo describing how to use Hugging Face's Wav2Vec2 with PyCTCDecode

🤗 Transformers Wav2Vec2 + PyCTCDecode Introduction This repo shows how 🤗 Transformers can be used in combination with kensho-technologies's PyCTCDec

Patrick von Platen 102 Oct 22, 2022
PyTorch implementation of Lip to Speech Synthesis with Visual Context Attentional GAN (NeurIPS2021)

Lip to Speech Synthesis with Visual Context Attentional GAN This repository contains the PyTorch implementation of the following paper: Lip to Speech

6 Nov 02, 2022
PyStan, a Python interface to Stan, a platform for statistical modeling. Documentation: https://pystan.readthedocs.io

PyStan NOTE: This documentation describes a BETA release of PyStan 3. PyStan is a Python interface to Stan, a package for Bayesian inference. Stan® is

Stan 229 Dec 29, 2022
Converts given image (png, jpg, etc) to amogus gif.

Image to Amogus Converter Converts given image (.png, .jpg, etc) to an amogus gif! Usage Place image in the /target/ folder (or anywhere realistically

Hank Magan 1 Nov 24, 2021
Synthesizing and manipulating 2048x1024 images with conditional GANs

pix2pixHD Project | Youtube | Paper Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic image-to-image translatio

NVIDIA Corporation 6k Dec 27, 2022
Multi-Scale Vision Longformer: A New Vision Transformer for High-Resolution Image Encoding

Vision Longformer This project provides the source code for the vision longformer paper. Multi-Scale Vision Longformer: A New Vision Transformer for H

Microsoft 209 Dec 30, 2022
Neural network-based build time estimation for additive manufacturing

Neural network-based build time estimation for additive manufacturing Oh, Y., Sharp, M., Sprock, T., & Kwon, S. (2021). Neural network-based build tim

Yosep 1 Nov 15, 2021
Unsupervised Pre-training for Person Re-identification (LUPerson)

LUPerson Unsupervised Pre-training for Person Re-identification (LUPerson). The repository is for our CVPR2021 paper Unsupervised Pre-training for Per

143 Dec 24, 2022
使用yolov5训练自己数据集(详细过程)并通过flask部署

使用yolov5训练自己的数据集(详细过程)并通过flask部署 依赖库 torch torchvision numpy opencv-python lxml tqdm flask pillow tensorboard matplotlib pycocotools Windows,请使用 pycoc

HB.com 19 Dec 28, 2022
MODNet: Trimap-Free Portrait Matting in Real Time

MODNet is a model for real-time portrait matting with only RGB image input.

Zhanghan Ke 2.8k Dec 30, 2022
PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability

PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability PCACE is a new algorithm for ranking neurons in a CNN architecture in order

4 Jan 04, 2022
FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware.

FIRM-AFL FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware. FIRM-AFL addresses two fundamental problems in IoT fuzzing. First, it

356 Dec 23, 2022
Code for HodgeNet: Learning Spectral Geometry on Triangle Meshes, in SIGGRAPH 2021.

HodgeNet | Webpage | Paper | Video HodgeNet: Learning Spectral Geometry on Triangle Meshes Dmitriy Smirnov, Justin Solomon SIGGRAPH 2021 Set-up To ins

Dima Smirnov 61 Nov 27, 2022
PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks

Code for the paper "PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks" (ICPR 2020)

Wenwen Yu 498 Dec 24, 2022
PyTorch common framework to accelerate network implementation, training and validation

pytorch-framework PyTorch common framework to accelerate network implementation, training and validation. This framework is inspired by works from MML

Dongliang Cao 3 Dec 19, 2022
The GitHub repository for the paper: “Time Series is a Special Sequence: Forecasting with Sample Convolution and Interaction“.

SCINet This is the original PyTorch implementation of the following work: Time Series is a Special Sequence: Forecasting with Sample Convolution and I

386 Jan 01, 2023
Hand Gesture Volume Control | Open CV | Computer Vision

Gesture Volume Control Hand Gesture Volume Control | Open CV | Computer Vision Use gesture control to change the volume of a computer. First we look i

Jhenil Parihar 3 Jun 15, 2022
FS2KToolbox FS2K Dataset Towards the translation between Face

FS2KToolbox FS2K Dataset Towards the translation between Face -- Sketch. Download (photo+sketch+annotation): Google-drive, Baidu-disk, pw: FS2K. For

Deng-Ping Fan 5 Jan 03, 2023
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk

Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer

Spotify 10.6k Jan 04, 2023