Reference implementation for Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Overview

Diffusion Probabilistic Models

This repository provides a reference implementation of the method described in the paper:

Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, Surya Ganguli
International Conference on Machine Learning, 2015
http://arxiv.org/abs/1503.03585

This implementation builds a generative model of data by training a Gaussian diffusion process to transform a noise distribution into a data distribution in a fixed number of time steps. The mean and covariance of the diffusion process are parameterized using deep supervised learning. The resulting model is tractable to train, easy to exactly sample from, allows the probability of datapoints to be cheaply evaluated, and allows straightforward computation of conditional and posterior distributions.

Using the Software

In order to train a diffusion probabilistic model on the default dataset of MNIST, install dependencies (see below), and then run python train.py.

Dependencies

  1. Install Blocks and its dependencies following these instructions
  2. Setup Fuel and download MNIST following these instructions.

As of October 16, 2015 this code requires the bleeding edge, rather than stable, versions of both Blocks and Fuel. (thanks to David Hofmann for pointing out that the stable release will not work due to an interface change)

Output

The objective function being minimized is the bound on the negative log likelihood in bits per pixel, minus the negative log likelihood under an identity-covariance Gaussian model. That is, it is the negative of the number in the rightmost column in Table 1 in the paper.

Logging information is printed to the console once per training epoch, including the current value of the objective on the training set.

Figures showing samples from the model, parameters, gradients, and training progress are also output periodically (every 25 epochs by default -- see train.py).

The samples from the model are of three types -- standard samples, samples inpainting the left half of masked images, and samples denoising images with Gaussian noise added (by default, the signal-to-noise ratio is 1). This demonstrates the straightforward way in which inpainting, denoising, and sampling from a posterior in general can be performed using this framework.

Here are samples generated by this code after 825 training epochs on MNIST, trained using the command run train.py:

Here are samples generated by this code after 1700 training epochs on CIFAR-10, trained using the command run train.py --batch-size 200 --dataset CIFAR10 --model-args "n_hidden_dense_lower=1000,n_hidden_dense_lower_output=5,n_hidden_conv=100,n_layers_conv=6,n_layers_dense_lower=6,n_layers_dense_upper=4,n_hidden_dense_upper=100":

Miscellaneous

Different nonlinearities - In the paper, we used softplus units in the convolutional layers, and tanh units in the dense layers. In this implementation, I use leaky ReLU units everywhere.

Original source code - This repository is a refactoring of the code used to run the experiments in the published paper. In the spirit of reproducibility, if you email me a request I am willing to share the original source code. It is poorly commented and held together with duct tape though. For most applications, you will be better off using the reference implementation provided here.

Contact - I would love to hear from you. Let me know what goes right/wrong! [email protected]

Owner
Jascha Sohl-Dickstein
Jascha Sohl-Dickstein
A pytorch reproduction of { Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation }.

A PyTorch Reproduction of HCN Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation. Ch

Guyue Hu 210 Dec 31, 2022
Sequential model-based optimization with a `scipy.optimize` interface

Scikit-Optimize Scikit-Optimize, or skopt, is a simple and efficient library to minimize (very) expensive and noisy black-box functions. It implements

Scikit-Optimize 2.5k Jan 04, 2023
Post-Training Quantization for Vision transformers.

PTQ4ViT Post-Training Quantization Framework for Vision Transformers. We use the twin uniform quantization method to reduce the quantization error on

Zhihang Yuan 61 Dec 28, 2022
Recreate CenternetV2 based on MMDET.

Introduction This project is trying to Recreate CenternetV2 based on MMDET, which is proposed in paper Probabilistic two-stage detection. This project

25 Dec 09, 2022
[TIP 2021] SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction

SADRNet Paper link: SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction Requirements python

Multimedia Computing Group, Nanjing University 99 Dec 30, 2022
An implementation of DeepMind's Relational Recurrent Neural Networks in PyTorch.

relational-rnn-pytorch An implementation of DeepMind's Relational Recurrent Neural Networks (Santoro et al. 2018) in PyTorch. Relational Memory Core (

Sang-gil Lee 241 Nov 18, 2022
Self-Supervised Deep Blind Video Super-Resolution

Self-Blind-VSR Paper | Discussion Self-Supervised Deep Blind Video Super-Resolution By Haoran Bai and Jinshan Pan Abstract Existing deep learning-base

Haoran Bai 35 Dec 09, 2022
Code from the paper "High-Performance Brain-to-Text Communication via Handwriting"

High-Performance Brain-to-Text Communication via Handwriting Overview This repo is associated with this manuscript, preprint and dataset. The code can

Francis R. Willett 306 Jan 03, 2023
Source code for the plant extraction workflow introduced in the paper “Agricultural Plant Cataloging and Establishment of a Data Framework from UAV-based Crop Images by Computer Vision”

Plant extraction workflow Source code for the plant extraction workflow introduced in the paper "Agricultural Plant Cataloging and Establishment of a

Maurice Günder 0 Apr 22, 2022
"Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback"

This is code repo for our EMNLP 2017 paper "Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback", which implements the A2C algorithm on top of a neural encoder-

Khanh Nguyen 131 Oct 21, 2022
S2s2net - Sentinel-2 Super-Resolution Segmentation Network

S2S2Net Sentinel-2 Super-Resolution Segmentation Network Getting started Install

Wei Ji 10 Nov 10, 2022
Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images

Keras-ICNet [paper] Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images. Training in progress! Requisites Python 3.6.3 K

Aitor Ruano 87 Dec 16, 2022
Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020).

SentiBERT Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020). https://arxiv.org/abs/20

Da Yin 66 Aug 13, 2022
Generic Foreground Segmentation in Images

Pixel Objectness The following repository contains pretrained model for pixel objectness. Please visit our project page for the paper and visual resul

Suyog Jain 157 Nov 21, 2022
Using LSTM to detect spoofing attacks in an Air-Ground network

Using LSTM to detect spoofing attacks in an Air-Ground network Specifications IDE: Spider Packages: Tensorflow 2.1.0 Keras NumPy Scikit-learn Matplotl

Tiep M. H. 1 Nov 20, 2021
Simulating an AI playing 2048 using the Expectimax algorithm

2048-expectimax Simulating an AI playing 2048 using the Expectimax algorithm The base game engine uses code from here. The AI player is modeled as a m

Subha Ramesh 2 Jan 31, 2022
Few-Shot Graph Learning for Molecular Property Prediction

Few-shot Graph Learning for Molecular Property Prediction Introduction This is the source code and dataset for the following paper: Few-shot Graph Lea

Zhichun Guo 94 Dec 12, 2022
Implementation of SSMF: Shifting Seasonal Matrix Factorization

SSMF Implementation of SSMF: Shifting Seasonal Matrix Factorization, Koki Kawabata, Siddharth Bhatia, Rui Liu, Mohit Wadhwa, Bryan Hooi. NeurIPS, 2021

Koki Kawabata 9 Jun 10, 2022
General Assembly Capstone: NBA Game Predictor

Project 6: Predicting NBA Games Problem Statement Can I predict the results of NBA games from the back-half of a season from the opening half of the s

Adam Muhammad Klesc 1 Jan 14, 2022
Data and codes for ACL 2021 paper: Towards Emotional Support Dialog Systems

Emotional-Support-Conversation Copyright © 2021 CoAI Group, Tsinghua University. All rights reserved. Data and codes are for academic research use onl

126 Dec 21, 2022