Automatic differentiation with weighted finite-state transducers.

Related tags

Deep Learninggtn
Overview
logo

GTN: Automatic Differentiation with WFSTs

Quickstart | Installation | Documentation

facebookresearch Documentation Status

What is GTN?

GTN is a framework for automatic differentiation with weighted finite-state transducers. The framework is written in C++ and has bindings to Python.

The goal of GTN is to make adding and experimenting with structure in learning algorithms much simpler. This structure is encoded as weighted automata, either acceptors (WFSAs) or transducers (WFSTs). With gtn you can dynamically construct complex graphs from operations on simpler graphs. Automatic differentiation gives gradients with respect to any input or intermediate graph with a single call to gtn.backward.

Also checkout the repository gtn_applications which consists of GTN applications to Handwriting Recognition (HWR), Automatic Speech Recognition (ASR) etc.

Quickstart

First install the python bindings.

The following is a minimal example of building two WFSAs with gtn, constructing a simple function on the graphs, and computing gradients. Open In Colab

import gtn

# Make some graphs:
g1 = gtn.Graph()
g1.add_node(True)  # Add a start node
g1.add_node()  # Add an internal node
g1.add_node(False, True)  # Add an accepting node

# Add arcs with (src node, dst node, label):
g1.add_arc(0, 1, 1)
g1.add_arc(0, 1, 2)
g1.add_arc(1, 2, 1)
g1.add_arc(1, 2, 0)

g2 = gtn.Graph()
g2.add_node(True, True)
g2.add_arc(0, 0, 1)
g2.add_arc(0, 0, 0)

# Compute a function of the graphs:
intersection = gtn.intersect(g1, g2)
score = gtn.forward_score(intersection)

# Visualize the intersected graph:
gtn.draw(intersection, "intersection.pdf")

# Backprop:
gtn.backward(score)

# Print gradients of arc weights 
print(g1.grad().weights_to_list()) # [1.0, 0.0, 1.0, 0.0]

Installation

Requirements

  • A C++ compiler with good C++14 support (e.g. g++ >= 5)
  • cmake >= 3.5.1, and make

Python

Install the Python bindings with

pip install gtn

Building C++ from source

First, clone the project:

git clone [email protected]:facebookresearch/gtn.git && cd gtn

Create a build directory and run CMake and make:

mkdir -p build && cd build
cmake ..
make -j $(nproc)

Run tests with:

make test

Run make install to install.

Python bindings from source

Setting up your environment:

conda create -n gtn_env
conda activate gtn_env

Required dependencies:

cd bindings/python
conda install setuptools

Use one of the following commands for installation:

python setup.py install

or, to install in editable mode (for dev):

python setup.py develop

Python binding tests can be run with make test, or with

python -m unittest discover bindings/python/test

Run a simple example:

python bindings/python/examples/simple_graph.py

Citing this Repository

If you use the code in this repository, please cite:

Awni Hannun, Vineel Pratap, Jacob Kahn and Wei-Ning Hsu. Differentiable Weighted Finite-State Transducers. arXiv 2010.01003, 2020.

@article{hannun2020dwfst,
  title={Differentiable Weighted Finite-State Transducers},
  author={Hannun, Awni and Pratap, Vineel and Kahn, Jacob and Hsu, Wei-Ning},
  journal={arXiv preprint arXiv:2010.01003},
  year={2020}
}

License

GTN is licensed under a MIT license. See LICENSE.

TFOD-MASKRCNN - Tensorflow MaskRCNN With Python

Tensorflow- MaskRCNN Steps git clone https://github.com/amalaj7/TFOD-MASKRCNN.gi

Amal Ajay 2 Jan 18, 2022
Repository for MDPGT

MD-PGT Repository for implementing and reproducing the results for the paper MDPGT: Momentum-based Decentralized Policy Gradient Tracking. Available E

Xian Yeow Lee 2 Dec 30, 2021
Robust Lane Detection via Expanded Self Attention (WACV 2022)

Robust Lane Detection via Expanded Self Attention (WACV 2022) Minhyeok Lee, Junhyeop Lee, Dogyoon Lee, Woojin Kim, Sangwon Hwang, Sangyoun Lee Overvie

Min Hyeok Lee 18 Nov 12, 2022
An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym

gym-idsgame An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym gym-idsgame is a reinforcement learning environment for simulating at

Kim Hammar 29 Dec 03, 2022
Generic template to bootstrap your PyTorch project with PyTorch Lightning, Hydra, W&B, and DVC.

NN Template Generic template to bootstrap your PyTorch project. Click on Use this Template and avoid writing boilerplate code for: PyTorch Lightning,

Luca Moschella 520 Dec 30, 2022
This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

4 Aug 02, 2022
HIVE: Evaluating the Human Interpretability of Visual Explanations

HIVE: Evaluating the Human Interpretability of Visual Explanations Project Page | Paper This repo provides the code for HIVE, a human evaluation frame

Princeton Visual AI Lab 16 Dec 13, 2022
Code for the SIGGRAPH 2021 paper "Consistent Depth of Moving Objects in Video".

Consistent Depth of Moving Objects in Video This repository contains training code for the SIGGRAPH 2021 paper "Consistent Depth of Moving Objects in

Google 203 Jan 05, 2023
Hippocampal segmentation using the UNet network for each axis

Hipposeg Hippocampal segmentation using the UNet network for each axis, inspired by https://github.com/MICLab-Unicamp/e2dhipseg Red: False Positive Gr

Juan Carlos Aguirre Arango 0 Sep 02, 2021
PyTorch implementation for Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition.

Stochastic CSLR This is the PyTorch implementation for the ECCV 2020 paper: Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuou

Zhe Niu 28 Dec 19, 2022
YOLOv5🚀 reproduction by Guo Quanhao using PaddlePaddle

YOLOv5-Paddle YOLOv5 🚀 reproduction by Guo Quanhao using PaddlePaddle 支持AutoBatch 支持AutoAnchor 支持GPU Memory 快速开始 使用AIStudio高性能环境快速构建YOLOv5训练(PaddlePa

QuanHao Guo 20 Nov 14, 2022
Unofficial PyTorch Implementation of UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation This is an unofficial PyTorch

MINDs Lab 170 Jan 04, 2023
Robust, modular and efficient implementation of advanced Hamiltonian Monte Carlo algorithms

AdvancedHMC.jl AdvancedHMC.jl provides a robust, modular and efficient implementation of advanced HMC algorithms. An illustrative example for Advanced

The Turing Language 167 Jan 01, 2023
A study project using the AA-RMVSNet to reconstruct buildings from multiple images

3d-building-reconstruction This is part of a study project using the AA-RMVSNet to reconstruct buildings from multiple images. Introduction It is exci

17 Oct 17, 2022
Source codes of CenterTrack++ in 2021 ICME Workshop on Big Surveillance Data Processing and Analysis

MOT Tracked object bounding box association (CenterTrack++) New association method based on CenterTrack. Two new branches (Tracked Size and IOU) are a

36 Oct 04, 2022
Official PyTorch implementation of GDWCT (CVPR 2019, oral)

This repository provides the official code of GDWCT, and it is written in PyTorch. Paper Image-to-Image Translation via Group-wise Deep Whitening-and-

WonwoongCho 135 Dec 02, 2022
Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective

Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective Zhengzhuo Xu, Zenghao Chai, Chun Yuan This is the PyTorch implement

Sincere 16 Dec 15, 2022
Learning Visual Words for Weakly-Supervised Semantic Segmentation

[IJCAI 2021] Learning Visual Words for Weakly-Supervised Semantic Segmentation Implementation of IJCAI 2021 paper Learning Visual Words for Weakly-Sup

Lixiang Ru 24 Oct 05, 2022
The Balloon Learning Environment - flying stratospheric balloons with deep reinforcement learning.

Balloon Learning Environment Docs The Balloon Learning Environment (BLE) is a simulator for stratospheric balloons. It is designed as a benchmark envi

Google 87 Dec 25, 2022
Robust & Reliable Route Recommendation on Road Networks

NeuroMLR: Robust & Reliable Route Recommendation on Road Networks This repository is the official implementation of NeuroMLR: Robust & Reliable Route

4 Dec 20, 2022