Automatic differentiation with weighted finite-state transducers.

Related tags

Deep Learninggtn
Overview
logo

GTN: Automatic Differentiation with WFSTs

Quickstart | Installation | Documentation

facebookresearch Documentation Status

What is GTN?

GTN is a framework for automatic differentiation with weighted finite-state transducers. The framework is written in C++ and has bindings to Python.

The goal of GTN is to make adding and experimenting with structure in learning algorithms much simpler. This structure is encoded as weighted automata, either acceptors (WFSAs) or transducers (WFSTs). With gtn you can dynamically construct complex graphs from operations on simpler graphs. Automatic differentiation gives gradients with respect to any input or intermediate graph with a single call to gtn.backward.

Also checkout the repository gtn_applications which consists of GTN applications to Handwriting Recognition (HWR), Automatic Speech Recognition (ASR) etc.

Quickstart

First install the python bindings.

The following is a minimal example of building two WFSAs with gtn, constructing a simple function on the graphs, and computing gradients. Open In Colab

import gtn

# Make some graphs:
g1 = gtn.Graph()
g1.add_node(True)  # Add a start node
g1.add_node()  # Add an internal node
g1.add_node(False, True)  # Add an accepting node

# Add arcs with (src node, dst node, label):
g1.add_arc(0, 1, 1)
g1.add_arc(0, 1, 2)
g1.add_arc(1, 2, 1)
g1.add_arc(1, 2, 0)

g2 = gtn.Graph()
g2.add_node(True, True)
g2.add_arc(0, 0, 1)
g2.add_arc(0, 0, 0)

# Compute a function of the graphs:
intersection = gtn.intersect(g1, g2)
score = gtn.forward_score(intersection)

# Visualize the intersected graph:
gtn.draw(intersection, "intersection.pdf")

# Backprop:
gtn.backward(score)

# Print gradients of arc weights 
print(g1.grad().weights_to_list()) # [1.0, 0.0, 1.0, 0.0]

Installation

Requirements

  • A C++ compiler with good C++14 support (e.g. g++ >= 5)
  • cmake >= 3.5.1, and make

Python

Install the Python bindings with

pip install gtn

Building C++ from source

First, clone the project:

git clone [email protected]:facebookresearch/gtn.git && cd gtn

Create a build directory and run CMake and make:

mkdir -p build && cd build
cmake ..
make -j $(nproc)

Run tests with:

make test

Run make install to install.

Python bindings from source

Setting up your environment:

conda create -n gtn_env
conda activate gtn_env

Required dependencies:

cd bindings/python
conda install setuptools

Use one of the following commands for installation:

python setup.py install

or, to install in editable mode (for dev):

python setup.py develop

Python binding tests can be run with make test, or with

python -m unittest discover bindings/python/test

Run a simple example:

python bindings/python/examples/simple_graph.py

Citing this Repository

If you use the code in this repository, please cite:

Awni Hannun, Vineel Pratap, Jacob Kahn and Wei-Ning Hsu. Differentiable Weighted Finite-State Transducers. arXiv 2010.01003, 2020.

@article{hannun2020dwfst,
  title={Differentiable Weighted Finite-State Transducers},
  author={Hannun, Awni and Pratap, Vineel and Kahn, Jacob and Hsu, Wei-Ning},
  journal={arXiv preprint arXiv:2010.01003},
  year={2020}
}

License

GTN is licensed under a MIT license. See LICENSE.

Differentiable Wavetable Synthesis

Differentiable Wavetable Synthesis

4 Feb 11, 2022
TextureGAN in Pytorch

TextureGAN This code is our PyTorch implementation of TextureGAN [Project] [Arxiv] TextureGAN is a generative adversarial network conditioned on sketc

Patsorn 147 Dec 14, 2022
Making a music video with Wav2CLIP and VQGAN-CLIP

music2video Overview A repo for making a music video with Wav2CLIP and VQGAN-CLIP. The base code was derived from VQGAN-CLIP The CLIP embedding for au

Joel Jang | 장요엘 163 Dec 26, 2022
Barlow Twins and HSIC

Barlow Twins and HSIC Unofficial Pytorch implementation for Barlow Twins and HSIC_SSL on small datasets (CIFAR10, STL10, and Tiny ImageNet). Correspon

Yao-Hung Hubert Tsai 49 Nov 24, 2022
Source code for From Stars to Subgraphs

GNNAsKernel Official code for From Stars to Subgraphs: Uplifting Any GNN with Local Structure Awareness Visualizations GNN-AK(+) GNN-AK(+) with Subgra

44 Dec 19, 2022
A PyTorch Lightning solution to training OpenAI's CLIP from scratch.

train-CLIP 📎 A PyTorch Lightning solution to training CLIP from scratch. Goal ⚽ Our aim is to create an easy to use Lightning implementation of OpenA

Cade Gordon 396 Dec 30, 2022
Multiband spectro-radiometric satellite image analysis with K-means cluster algorithm

Multi-band Spectro Radiomertric Image Analysis with K-means Cluster Algorithm Overview Multi-band Spectro Radiomertric images are images comprising of

Chibueze Henry 6 Mar 16, 2022
A simple Python library for stochastic graphical ecological models

What is Viridicle? Viridicle is a library for simulating stochastic graphical ecological models. It implements the continuous time models described in

Theorem Engine 0 Dec 04, 2021
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
Migration of Edge-based Distributed Federated Learning

FedFly: Towards Migration in Edge-based Distributed Federated Learning About the research Due to mobility, a device participating in Federated Learnin

qub-blesson 11 Nov 13, 2022
Vision Deep-Learning using Tensorflow, Keras.

Welcome! I am a computer vision deep learning developer working in Korea. This is my blog, and you can see everything I've studied here. https://www.n

kimminjun 6 Dec 14, 2022
TVNet: Temporal Voting Network for Action Localization

TVNet: Temporal Voting Network for Action Localization This repo holds the codes of paper: "TVNet: Temporal Voting Network for Action Localization". P

hywang 5 Jul 26, 2022
A 3D sparse LBM solver implemented using Taichi

taichi_LBM3D Background Taichi_LBM3D is a 3D lattice Boltzmann solver with Multi-Relaxation-Time collision scheme and sparse storage structure impleme

Jianhui Yang 121 Jan 06, 2023
Wileless-PDGNet Implementation

Wileless-PDGNet Implementation This repo is related to the following paper: Boning Li, Ananthram Swami, and Santiago Segarra, "Power allocation for wi

6 Oct 04, 2022
CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing

CapsuleVOS This is the code for the ICCV 2019 paper CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing. Arxiv Link: https://a

53 Oct 27, 2022
Pytorch Performace Tuning, WandB, AMP, Multi-GPU, TensorRT, Triton

Plant Pathology 2020 FGVC7 Introduction A deep learning model pipeline for training, experimentaiton and deployment for the Kaggle Competition, Plant

Bharat Giddwani 0 Feb 25, 2022
Code repository for "Free View Synthesis", ECCV 2020.

Free View Synthesis Code repository for "Free View Synthesis", ECCV 2020. Setup Install the following Python packages in your Python environment - num

Intelligent Systems Lab Org 253 Dec 07, 2022
A simple configurable bot for sending arXiv article alert by mail

arXiv-newsletter A simple configurable bot for sending arXiv article alert by mail. Prerequisites PyYAML=5.3.1 arxiv=1.4.0 Configuration All config

SXKDZ 21 Nov 09, 2022
This is the official source code of "BiCAT: Bi-Chronological Augmentation of Transformer for Sequential Recommendation".

BiCAT This is our TensorFlow implementation for the paper: "BiCAT: Sequential Recommendation with Bidirectional Chronological Augmentation of Transfor

John 15 Dec 06, 2022
Robust and Accurate Object Detection via Self-Knowledge Distillation

Robust and Accurate Object Detection via Self-Knowledge Distillation paper:https://arxiv.org/abs/2111.07239 Environments Python 3.7 Cuda 10.1 Prepare

Weipeng Xu 6 Jul 01, 2022