Analysis of Antarctica sequencing samples contaminated with SARS-CoV-2

Overview

Analysis of SARS-CoV-2 reads in sequencing of 2018-2019 Antarctica samples in PRJNA692319

The samples analyzed here are described in this preprint, which is a pre-print by Istvan Csabai and co-workers that describes SARS-CoV-2 reads in samples from Antarctica sequencing in China. I was originally alerted to the pre-print by Carl Zimmer on Dec-23-2021. Istvan Csabai and coworkers subsequently posted a second pre-print that also analyzes the host reads.

Repeating key parts of the analysis

The code in this repo independently repeats some of the analyses.

To run the analysis, build the conda environment in environment.yml and then run the analysis using Snakefile. To do this on the Hutch cluster, using run.bash:

sbatch -c 16 run.bash

The results are placed in the ./results/ subdirectory. Most of the results files are not tracked due to file-size limitations, but the following key files are tracked:

  • results/alignment_counts.csv gives the number of reads aligning to SARS-CoV-2 for each sample. This confirms that three accessions (SRR13441704, SRR13441705, and SRR13441708) have most of the SARS-CoV-2 reads, although a few other samples also have some.
  • results/variant_analysis.csv reports all variants found in the samples relative to Wuhan-Hu-1.
  • results/variant_analysis_to_outgroup.csv reports the variants found in the samples that represent mutations from Wuhan-Hu-1 towards the two closest bat coronavirus relatives, RaTG13 and BANAL-20-52. Note that some of the reads contain three key mutations relative to Wuhan-Hu-1 (C8782T, C18060T, and T28144C) that move the sequence closer to the bat coronavirus relatives. These mutations define one of the two plausible progenitors for all currently known human SARS-CoV-2 sequences (see Kumar et al (2021) and Bloom (2021)).

Archived links after initially hearing about pre-print

I archived the following links on Dec-23-2021 after hearing about the pre-print from Carl Zimmer:

Deletion of some samples from SRA

On Jan-3-2022, I received an e-mail one of the pre-print authors, Istvan Csabai, saying that three of the samples (appearing to be the ones with the most SARS-CoV-2 reads) had been removed from the SRA. He also noted that bioRxiv had refused to publish their pre-print without explanation; the file he attached indicates the submission ID was BIORXIV-2021-472446v1. I confirmed that three of the accessions had indeed been removed from the SRA as shown in the following archived links:

I also e-mailed Richard Sever at bioRxiv to ask why the pre-print was rejected, and explained I had repeated and validated the key findings. Richard Sever said he could not give details about the pre-print review process, but that in the future the authors could appeal if they thought the rejection was unfounded.

Details from Istvan Csabai

On Jan-4-2022, I chatted with Istvan Csabai. He had contacted the authors of the pre-print, and shared their reply to him. The authors had prepped the samples in early 2019, and submitted to Sangon BioTech for sequencing in December, getting the results back in early January.

Second pre-print from Csabai and restoration of deleted files

Istvan Csabai then worked on a second pre-print that analyzed host reads and made various findings, including co-contamination with African green monkey (Vero?) and human DNA. He sent me pre-print drafts on Jan-16-2022 and on Jan-24-2022, and I provided comments on both drafts and agreed to be listed in the Acknowledgments.

On Feb-3-2022, Istvan Csabai told me that the second pre-print had also been rejected from bioRxiv. Because I had previously contacted Richard Sever when I heard the first pre-print was rejected, I suggested Istvan could CC me on an e-mail to Richard Sever appealing the rejection, which he did. Unfortunately, Richard Sever declined the appeal, so instead Istvan posted the pre-print on Resarch Square.

At that point on Feb-3-2022, I also re-checked the three deletion accessions (SRR13441704, SRR13441705, and SRR13441708). To my surprise, all three were now again available by public access. Here are archived links demonstrating that they were again available:

I confirmed that the replaced accessions were identical to the deleted ones.

Inquiry to authors of PRJNA692319

On Feb-8-2022, I e-mailed the Chinese authors of the paper to ask about the sample deletion and restoration. They e-mailed back almost immediately. They confirmed what they had told Istvan: they had sequenced the samples with Sangon Biotech (Shanghai) after extracting the DNA in December 2019 from their samples. The suspect that contamination of the samples happened at Sangon Biotech. They deleted the three most contaminated samples from the Sequence Read Archive. They do not know why the samples were then "un-deleted."

Owner
Jesse Bloom
I research the evolution of viruses and proteins.
Jesse Bloom
A PyTorch implementation of "Predict then Propagate: Graph Neural Networks meet Personalized PageRank" (ICLR 2019).

APPNP ⠀ A PyTorch implementation of Predict then Propagate: Graph Neural Networks meet Personalized PageRank (ICLR 2019). Abstract Neural message pass

Benedek Rozemberczki 329 Dec 30, 2022
Neural Scene Flow Prior (NeurIPS 2021 spotlight)

Neural Scene Flow Prior Xueqian Li, Jhony Kaesemodel Pontes, Simon Lucey Will appear on Thirty-fifth Conference on Neural Information Processing Syste

Lilac Lee 85 Jan 03, 2023
New AidForBlind - Various Libraries used like OpenCV and other mentioned in Requirements.txt

AidForBlind Recommended PyCharm IDE Various Libraries used like OpenCV and other

Aalhad Chandewar 1 Jan 13, 2022
This Artificial Intelligence program can take a black and white/grayscale image and generate a realistic or plausible colorized version of the same picture.

Colorizer The point of this project is to write a program capable of taking a black and white / grayscale image, and generating a realistic or plausib

Maitri Shah 1 Jan 06, 2022
PlenOctrees: NeRF-SH Training & Conversion

PlenOctrees Official Repo: NeRF-SH training and conversion This repository contains code to train NeRF-SH and to extract the PlenOctree, constituting

Alex Yu 323 Dec 29, 2022
This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking

SimpleTrack This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking. We are still working on writing t

TuSimple 189 Dec 26, 2022
minimizer-space de Bruijn graphs (mdBG) for whole genome assembly

rust-mdbg: Minimizer-space de Bruijn graphs (mdBG) for whole-genome assembly rust-mdbg is an ultra-fast minimizer-space de Bruijn graph (mdBG) impleme

Barış Ekim 148 Dec 01, 2022
Code for "Neural 3D Scene Reconstruction with the Manhattan-world Assumption" CVPR 2022 Oral

News 05/10/2022 To make the comparison on ScanNet easier, we provide all quantitative and qualitative results of baselines here, including COLMAP, COL

ZJU3DV 365 Dec 30, 2022
Optimizaciones incrementales al problema N-Body con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámbito de HPC.

Python HPC Optimizaciones incrementales de N-Body (all-pairs) con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámb

Andrés Milla 12 Aug 04, 2022
Flax is a neural network ecosystem for JAX that is designed for flexibility.

Flax: A neural network library and ecosystem for JAX designed for flexibility Overview | Quick install | What does Flax look like? | Documentation See

Google 3.9k Jan 02, 2023
SHIFT15M: multiobjective large-scale fashion dataset with distributional shifts

[arXiv] The main motivation of the SHIFT15M project is to provide a dataset that contains natural dataset shifts collected from a web service IQON, wh

ZOZO, Inc. 138 Nov 24, 2022
Library for converting from RGB / GrayScale image to base64 and back.

Library for converting RGB / Grayscale numpy images from to base64 and back. Installation pip install -U image_to_base_64 Conversion RGB to base 64 b

Vladimir Iglovikov 16 Aug 28, 2022
PAthological QUpath Obsession - QuPath and Python conversations

PAQUO: PAthological QUpath Obsession Welcome to paquo 👋 , a library for interacting with QuPath from Python. paquo's goal is to provide a pythonic in

Bayer AG 60 Dec 31, 2022
A python implementation of Yolov5 to detect fire or smoke in the wild in Jetson Xavier nx and Jetson nano

yolov5-fire-smoke-detect-python A python implementation of Yolov5 to detect fire or smoke in the wild in Jetson Xavier nx and Jetson nano You can see

20 Dec 15, 2022
Open-Set Recognition: A Good Closed-Set Classifier is All You Need

Open-Set Recognition: A Good Closed-Set Classifier is All You Need Code for our paper: "Open-Set Recognition: A Good Closed-Set Classifier is All You

194 Jan 03, 2023
Moer Grounded Image Captioning by Distilling Image-Text Matching Model

Moer Grounded Image Captioning by Distilling Image-Text Matching Model Requirements Python 3.7 Pytorch 1.2 Prepare data Please use git clone --recurse

YE Zhou 60 Dec 16, 2022
Official Implementation of DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation

DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation [Arxiv] [Paper] As acquiring pixel-wise an

Lukas Hoyer 305 Dec 29, 2022
Breaking the Curse of Space Explosion: Towards Efficient NAS with Curriculum Search

Breaking the Curse of Space Explosion: Towards Effcient NAS with Curriculum Search Pytorch implementation for "Breaking the Curse of Space Explosion:

guoyong 17 Jan 03, 2023
Time should be taken seer-iously

TimeSeers seers - (Noun) plural form of seer - A person who foretells future events by or as if by supernatural means TimeSeers is an hierarchical Bay

279 Dec 26, 2022
PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).

PFENet This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEE

DV Lab 230 Dec 31, 2022