Analysis of Antarctica sequencing samples contaminated with SARS-CoV-2

Overview

Analysis of SARS-CoV-2 reads in sequencing of 2018-2019 Antarctica samples in PRJNA692319

The samples analyzed here are described in this preprint, which is a pre-print by Istvan Csabai and co-workers that describes SARS-CoV-2 reads in samples from Antarctica sequencing in China. I was originally alerted to the pre-print by Carl Zimmer on Dec-23-2021. Istvan Csabai and coworkers subsequently posted a second pre-print that also analyzes the host reads.

Repeating key parts of the analysis

The code in this repo independently repeats some of the analyses.

To run the analysis, build the conda environment in environment.yml and then run the analysis using Snakefile. To do this on the Hutch cluster, using run.bash:

sbatch -c 16 run.bash

The results are placed in the ./results/ subdirectory. Most of the results files are not tracked due to file-size limitations, but the following key files are tracked:

  • results/alignment_counts.csv gives the number of reads aligning to SARS-CoV-2 for each sample. This confirms that three accessions (SRR13441704, SRR13441705, and SRR13441708) have most of the SARS-CoV-2 reads, although a few other samples also have some.
  • results/variant_analysis.csv reports all variants found in the samples relative to Wuhan-Hu-1.
  • results/variant_analysis_to_outgroup.csv reports the variants found in the samples that represent mutations from Wuhan-Hu-1 towards the two closest bat coronavirus relatives, RaTG13 and BANAL-20-52. Note that some of the reads contain three key mutations relative to Wuhan-Hu-1 (C8782T, C18060T, and T28144C) that move the sequence closer to the bat coronavirus relatives. These mutations define one of the two plausible progenitors for all currently known human SARS-CoV-2 sequences (see Kumar et al (2021) and Bloom (2021)).

Archived links after initially hearing about pre-print

I archived the following links on Dec-23-2021 after hearing about the pre-print from Carl Zimmer:

Deletion of some samples from SRA

On Jan-3-2022, I received an e-mail one of the pre-print authors, Istvan Csabai, saying that three of the samples (appearing to be the ones with the most SARS-CoV-2 reads) had been removed from the SRA. He also noted that bioRxiv had refused to publish their pre-print without explanation; the file he attached indicates the submission ID was BIORXIV-2021-472446v1. I confirmed that three of the accessions had indeed been removed from the SRA as shown in the following archived links:

I also e-mailed Richard Sever at bioRxiv to ask why the pre-print was rejected, and explained I had repeated and validated the key findings. Richard Sever said he could not give details about the pre-print review process, but that in the future the authors could appeal if they thought the rejection was unfounded.

Details from Istvan Csabai

On Jan-4-2022, I chatted with Istvan Csabai. He had contacted the authors of the pre-print, and shared their reply to him. The authors had prepped the samples in early 2019, and submitted to Sangon BioTech for sequencing in December, getting the results back in early January.

Second pre-print from Csabai and restoration of deleted files

Istvan Csabai then worked on a second pre-print that analyzed host reads and made various findings, including co-contamination with African green monkey (Vero?) and human DNA. He sent me pre-print drafts on Jan-16-2022 and on Jan-24-2022, and I provided comments on both drafts and agreed to be listed in the Acknowledgments.

On Feb-3-2022, Istvan Csabai told me that the second pre-print had also been rejected from bioRxiv. Because I had previously contacted Richard Sever when I heard the first pre-print was rejected, I suggested Istvan could CC me on an e-mail to Richard Sever appealing the rejection, which he did. Unfortunately, Richard Sever declined the appeal, so instead Istvan posted the pre-print on Resarch Square.

At that point on Feb-3-2022, I also re-checked the three deletion accessions (SRR13441704, SRR13441705, and SRR13441708). To my surprise, all three were now again available by public access. Here are archived links demonstrating that they were again available:

I confirmed that the replaced accessions were identical to the deleted ones.

Inquiry to authors of PRJNA692319

On Feb-8-2022, I e-mailed the Chinese authors of the paper to ask about the sample deletion and restoration. They e-mailed back almost immediately. They confirmed what they had told Istvan: they had sequenced the samples with Sangon Biotech (Shanghai) after extracting the DNA in December 2019 from their samples. The suspect that contamination of the samples happened at Sangon Biotech. They deleted the three most contaminated samples from the Sequence Read Archive. They do not know why the samples were then "un-deleted."

Owner
Jesse Bloom
I research the evolution of viruses and proteins.
Jesse Bloom
Implementation of the paper "Shapley Explanation Networks"

Shapley Explanation Networks Implementation of the paper "Shapley Explanation Networks" at ICLR 2021. Note that this repo heavily uses the experimenta

68 Dec 27, 2022
Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted)

NLOS-OT Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted) Description In this reposit

Ruixu Geng(耿瑞旭) 16 Dec 16, 2022
Reinforcement learning for self-driving in a 3D simulation

SelfDrive_AI Reinforcement learning for self-driving in a 3D simulation (Created using UNITY-3D) 1. Requirements for the SelfDrive_AI Gym You need Pyt

Surajit Saikia 17 Dec 14, 2021
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation

Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici

24 Dec 31, 2022
This repository contains the code for the ICCV 2019 paper "Occupancy Flow - 4D Reconstruction by Learning Particle Dynamics"

Occupancy Flow This repository contains the code for the project Occupancy Flow - 4D Reconstruction by Learning Particle Dynamics. You can find detail

189 Dec 29, 2022
Implementation of the famous Image Manipulation\Forgery Detector "ManTraNet" in Pytorch

Who has never met a forged picture on the web ? No one ! Everyday we are constantly facing fake pictures touched up in Photoshop but it is not always

Rony Abecidan 77 Dec 16, 2022
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 01, 2023
[CVPR'21] Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild

IVOS-W Paper Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild Zhaoyun Yin, Jia Zheng, Weixin Luo, Shenhan Qian, Hanli

SVIP Lab 38 Dec 12, 2022
IA for recognising Traffic Signs using Keras [Tensorflow]

Traffic Signs Recognition ⚠️ 🚦 Fundamentals of Intelligent Systems Introduction 📄 Development of a neural network capable of recognizing nine differ

Sebastián Fernández García 2 Dec 19, 2022
Semantic Segmentation with Pytorch-Lightning

This is a simple demo for performing semantic segmentation on the Kitti dataset using Pytorch-Lightning and optimizing the neural network by monitoring and comparing runs with Weights & Biases.

Boris Dayma 58 Nov 18, 2022
PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

1 May 31, 2022
[Official] Exploring Temporal Coherence for More General Video Face Forgery Detection(ICCV 2021)

Exploring Temporal Coherence for More General Video Face Forgery Detection(FTCN) Yinglin Zheng, Jianmin Bao, Dong Chen, Ming Zeng, Fang Wen Accepted b

57 Dec 28, 2022
Official source code of Fast Point Transformer, CVPR 2022

Fast Point Transformer Project Page | Paper This repository contains the official source code and data for our paper: Fast Point Transformer Chunghyun

182 Dec 23, 2022
A Comparative Review of Recent Kinect-Based Action Recognition Algorithms (TIP2020, Matlab codes)

A Comparative Review of Recent Kinect-Based Action Recognition Algorithms This repo contains: the HDG implementation (Matlab codes) for 'Analysis and

Lei Wang 5 Oct 22, 2022
UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering

UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering This repository holds all the code and data for our recent work on

Mohamed El Banani 118 Dec 06, 2022
Relaxed-machines - explorations in neuro-symbolic differentiable interpreters

Relaxed Machines Explorations in neuro-symbolic differentiable interpreters. Baby steps: inc_stop Libraries JAX Haiku Optax Resources Chapter 3 (∂4: A

Nada Amin 6 Feb 02, 2022
NLMpy - A Python package to create neutral landscape models

NLMpy is a Python package for the creation of neutral landscape models that are widely used by landscape ecologists to model ecological patterns

Manaaki Whenua – Landcare Research 1 Oct 08, 2022
Specificity-preserving RGB-D Saliency Detection

Specificity-preserving RGB-D Saliency Detection Authors: Tao Zhou, Huazhu Fu, Geng Chen, Yi Zhou, Deng-Ping Fan, and Ling Shao. 1. Preface This reposi

Tao Zhou 35 Jan 08, 2023
MAU: A Motion-Aware Unit for Video Prediction and Beyond, NeurIPS2021

MAU (NeurIPS2021) Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, Yan Ye, Xinguang Xiang, Wen GAo. Official PyTorch Code for "MAU: A Motion-Aware

ZhengChang 20 Nov 25, 2022
A CNN implementation using only numpy. Supports multidimensional images, stride, etc.

A CNN implementation using only numpy. Supports multidimensional images, stride, etc. Speed up due to heavy use of slicing and mathematical simplification..

2 Nov 30, 2021