Real-time Neural Representation Fusion for Robust Volumetric Mapping

Overview

NeuralBlox: Real-Time Neural Representation Fusion for Robust Volumetric Mapping

Paper | Supplementary

teaser

This repository contains the implementation of the paper:

NeuralBlox: Real-Time Neural Representation Fusion for Robust Volumetric Mapping
Stefan Lionar*, Lukas Schmid*, Cesar Cadena, Roland Siegwart, and Andrei Cramariuc
International Conference on 3D Vision (3DV) 2021
(*equal contribution)

If you find our code or paper useful, please consider citing us:

@inproceedings{lionar2021neuralblox,
 title = {NeuralBlox: Real-Time Neural Representation Fusion for Robust Volumetric Mapping},
 author={Stefan Lionar, Lukas Schmid, Cesar Cadena, Roland Siegwart, Andrei Cramariuc},
 booktitle = {International Conference on 3D Vision (3DV)},
 year = {2021}}

Installation

conda env create -f environment.yaml
conda activate neuralblox
pip install torch-scatter==2.0.4 -f https://pytorch-geometric.com/whl/torch-1.4.0+cu101.html

Note: Make sure torch-scatter and PyTorch have the same cuda toolkit version. If PyTorch has a different cuda toolkit version, run:

conda install pytorch==1.4.0 cudatoolkit=10.1 -c pytorch

Next, compile the extension modules. You can do this via

python setup.py build_ext --inplace

Optional: For a noticeably faster inference on CPU-only settings, upgrade PyTorch and PyTorch Scatter to a newer version:

pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 -f https://download.pytorch.org/whl/torch_stable.html
pip install --upgrade --no-deps --force-reinstall torch-scatter==2.0.5 -f https://pytorch-geometric.com/whl/torch-1.7.1+cu101.html

Demo

To generate meshes using our pretrained models and evaluation dataset, you can select several configurations below and run it.

python generate_sequential.py configs/fusion/pretrained/redwood_0.5voxel_demo.yaml
python generate_sequential.py configs/fusion/pretrained/redwood_1voxel_demo.yaml
python generate_sequential.py configs/fusion/pretrained/redwood_1voxel_demo_cpu.yaml --no_cuda
  • The mesh will be generated to out_mesh/mesh folder.
  • To add noise, change the values under test.scene.noise in the config files.

Training backbone encoder and decoder

The backbone encoder and decoder mainly follow Convolutional Occupancy Networks (https://github.com/autonomousvision/convolutional_occupancy_networks) with some modifications adapted for our use case. Our pretrained model is provided in this repository.

Dataset

ShapeNet

The proprocessed ShapeNet dataset is from Occupancy Networks (https://github.com/autonomousvision/occupancy_networks). You can download it (73.4 GB) by running:

bash scripts/download_shapenet_pc.sh

After that, you should have the dataset in data/ShapeNet folder.

Training

To train the backbone network from scratch, run

python train_backbone.py configs/pointcloud/shapenet_grid24_pe.yaml

Latent code fusion

The pretrained fusion network is also provided in this repository.

Training dataset

To train from scratch, you can download our preprocessed Redwood Indoor RGBD Scan dataset by running:

bash scripts/download_redwood_preprocessed.sh

We align the gravity direction to be the same as ShapeNet ([0,1,0]) and convert the RGBD scans following ShapeNet format.

More information about the dataset is provided here: http://redwood-data.org/indoor_lidar_rgbd/.

Training

To train the fusion network from scratch, run

python train_fusion.py configs/fusion/train_fusion_redwood.yaml

Adjust the path to the encoder-decoder model in training.backbone_file of the .yaml file if necessary.

Generation

python generate_sequential.py CONFIG.yaml

If you are interested in generating the meshes from other dataset, e.g., ScanNet:

  • Structure the dataset following the format in demo/redwood_apartment_13k.
  • Adjust path, data_preprocessed_interval and intrinsics in the config file.
  • If necessary, align the dataset to have the same gravity direction as ShapeNet by adjusting align in the config file.

For example,

# ScanNet scene ID 0
python generate_sequential.py configs/fusion/pretrained/scannet_000.yaml

# ScanNet scene ID 24
python generate_sequential.py configs/fusion/pretrained/scannet_024.yaml

To use your own models, replace test.model_file (encoder-decoder) and test.merging_model_file (fusion network) in the config file to the path of your models.

Evaluation

You can evaluate the predicted meshes with respect to a ground truth mesh by following the steps below:

  1. Install CloudCompare
sudo apt install cloudcompare
  1. Copy a ground truth mesh (no RGB information expected) to evaluation/mesh_gt
  2. Copy prediction meshes to evaluation/mesh_pred
  3. If the prediction mesh does not contain RGB information, such as the output from our method, run:
python evaluate.py

Else, if it contains RGB information, such as the output from Voxblox, run:

python evaluate.py --color_mesh

We provide the trimmed mesh used for the ground truth of our quantitative evaluation. It can be downloaded here: https://polybox.ethz.ch/index.php/s/gedC9YpQPMPiucU/download

Lastly, to evaluate prediction meshes with respect to the trimmed mesh as ground truth, run:

python evaluate.py --demo

Or for colored mesh (e.g. from Voxblox):

python evaluate.py --demo --color_mesh

evaluation.csv will be generated to evaluation directory.

Acknowledgement

Some parts of the code are inherited from the official repository of Convolutional Occupancy Networks (https://github.com/autonomousvision/convolutional_occupancy_networks).

Owner
ETHZ ASL
ETHZ ASL
style mixing for animation face

An implementation of StyleGAN on Animation dataset. Install git clone https://github.com/MorvanZhou/anime-StyleGAN cd anime-StyleGAN pip install -r re

Morvan 46 Nov 30, 2022
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Demetri Pananos 9 Oct 04, 2022
Python library containing BART query generation and BERT-based Siamese models for neural retrieval.

Neural Retrieval Embedding-based Zero-shot Retrieval through Query Generation leverages query synthesis over large corpuses of unlabeled text (such as

Amazon Web Services - Labs 35 Apr 14, 2022
The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation

BiMix The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation arxiv Framework: visualization results: Requiremen

stanley 18 Sep 18, 2022
Dual Attention Network for Scene Segmentation (CVPR2019)

Dual Attention Network for Scene Segmentation(CVPR2019) Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei Fang,and Hanqing Lu Introduction W

Jun Fu 2.2k Dec 28, 2022
[ICLR 2021 Spotlight Oral] "Undistillable: Making A Nasty Teacher That CANNOT teach students", Haoyu Ma, Tianlong Chen, Ting-Kuei Hu, Chenyu You, Xiaohui Xie, Zhangyang Wang

Undistillable: Making A Nasty Teacher That CANNOT teach students "Undistillable: Making A Nasty Teacher That CANNOT teach students" Haoyu Ma, Tianlong

VITA 71 Dec 28, 2022
An official implementation of the Anchor DETR.

Anchor DETR: Query Design for Transformer-Based Detector Introduction This repository is an official implementation of the Anchor DETR. We encode the

MEGVII Research 276 Dec 28, 2022
Automatic number plate recognition using tech: Yolo, OCR, Scene text detection, scene text recognation, flask, torch

Automatic Number Plate Recognition Automatic Number Plate Recognition (ANPR) is the process of reading the characters on the plate with various optica

Meftun AKARSU 52 Dec 22, 2022
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning

Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning Code for the paper Harmonious Textual Layout Generation over Nat

7 Aug 09, 2022
Özlem Taşkın 0 Feb 23, 2022
Image to Image translation, image generataton, few shot learning

Semi-supervised Learning for Few-shot Image-to-Image Translation [paper] Abstract: In the last few years, unpaired image-to-image translation has witn

yaxingwang 49 Nov 18, 2022
Code for "Multi-Time Attention Networks for Irregularly Sampled Time Series", ICLR 2021.

Multi-Time Attention Networks (mTANs) This repository contains the PyTorch implementation for the paper Multi-Time Attention Networks for Irregularly

The Laboratory for Robust and Efficient Machine Learning 68 Dec 17, 2022
Hydra Lightning Template for Structured Configs

Hydra Lightning Template for Structured Configs Template for creating projects with pytorch-lightning and hydra. How to use this template? Create your

Model-driven Machine Learning 4 Jul 19, 2022
Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

Official repository of OFA. Paper: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

OFA Sys 1.4k Jan 08, 2023
[SIGGRAPH 2020] Attribute2Font: Creating Fonts You Want From Attributes

Attr2Font Introduction This is the official PyTorch implementation of the Attribute2Font: Creating Fonts You Want From Attributes. Paper: arXiv | Rese

Yue Gao 200 Dec 15, 2022
Advanced yabai wooting scripts

Yabai Wooting scripts Installation requirements Both https://github.com/xiamaz/python-yabai-client and https://github.com/xiamaz/python-wooting-rgb ne

Max Zhao 3 Dec 31, 2021
Deep learning model for EEG artifact removal

DeepSeparator Introduction Electroencephalogram (EEG) recordings are often contaminated with artifacts. Various methods have been developed to elimina

23 Dec 21, 2022
Development of IP code based on VIPs and AADM

Sparse Implicit Processes In this repository we include the two different versions of the SIP code developed for the article Sparse Implicit Processes

1 Aug 22, 2022