MoveNetを用いたPythonでの姿勢推定のデモ

Overview

MoveNet-Python-Example

MoveNetのPythonでの動作サンプルです。
ONNXに変換したモデルも同梱しています。変換自体を試したい方はMoveNet_tf2onnx.ipynbを使用ください。

smjqx-4ndt8

2021/08/24時点でTensorFlow Hubで提供されている以下モデルを使用しています。

Requirement

  • TensorFlow 2.3.0 or later
  • tensorflow-hub 0.12.0 or later
  • OpenCV 3.4.2 or later
  • onnxruntime 1.5.2 or later ※ONNX推論を使用する場合のみ

Demo

デモの実行方法は以下です。

SignlePose

python demo_singlepose.py
  • --device
    カメラデバイス番号の指定
    デフォルト:0
  • --file
    動画ファイルの指定 ※指定時はカメラデバイスより優先
    デフォルト:指定なし
  • --width
    カメラキャプチャ時の横幅
    デフォルト:960
  • --height
    カメラキャプチャ時の縦幅
    デフォルト:540
  • --mirror
    VideoCapture()取り込みデータを左右反転するか否か
    デフォルト:指定なし
  • --model_select
    使用モデルの選択
    Saved Model, ONNX:0→Lightning 1→Thunder
    TFLite:0→Lightning(float16) 1→Thunder(float16) 2→Lightning(int8) 3→Thunder(int8)
    デフォルト:0
  • --keypoint_score
    キーポイント表示の閾値
    デフォルト:0.4

MultiPose

python demo_multipose.py
  • --device
    カメラデバイス番号の指定
    デフォルト:0
  • --file
    動画ファイルの指定 ※指定時はカメラデバイスより優先
    デフォルト:指定なし
  • --width
    カメラキャプチャ時の横幅
    デフォルト:960
  • --height
    カメラキャプチャ時の縦幅
    デフォルト:540
  • --mirror
    VideoCapture()取り込みデータを左右反転するか否か
    デフォルト:指定なし
  • --keypoint_score
    キーポイント表示の閾値
    デフォルト:0.4
  • --bbox_score
    バウンディングボックス表示の閾値
    デフォルト:0.2

Reference

Author

高橋かずひと(https://twitter.com/KzhtTkhs)

License

MoveNet-Python-Example is under Apache-2.0 License.

License(Movie)

サンプル動画はNHKクリエイティブ・ライブラリーストリートバスケットを使用しています。

Owner
KazuhitoTakahashi
KazuhitoTakahashi
Accuracy Aligned. Concise Implementation of Swin Transformer

Accuracy Aligned. Concise Implementation of Swin Transformer This repository contains the implementation of Swin Transformer, and the training codes o

FengWang 77 Dec 16, 2022
A library to inspect itermediate layers of PyTorch models.

A library to inspect itermediate layers of PyTorch models. Why? It's often the case that we want to inspect intermediate layers of a model without mod

archinet.ai 380 Dec 28, 2022
Rust bindings for the C++ api of PyTorch.

tch-rs Rust bindings for the C++ api of PyTorch. The goal of the tch crate is to provide some thin wrappers around the C++ PyTorch api (a.k.a. libtorc

Laurent Mazare 2.3k Dec 30, 2022
An implementation of Deep Graph Infomax (DGI) in PyTorch

DGI Deep Graph Infomax (Veličković et al., ICLR 2019): https://arxiv.org/abs/1809.10341 Overview Here we provide an implementation of Deep Graph Infom

Petar Veličković 491 Jan 03, 2023
A Pytorch Implementation of [Source data‐free domain adaptation of object detector through domain

A Pytorch Implementation of Source data‐free domain adaptation of object detector through domain‐specific perturbation Please follow Faster R-CNN and

1 Dec 25, 2021
Saeed Lotfi 28 Dec 12, 2022
HiFT: Hierarchical Feature Transformer for Aerial Tracking (ICCV2021)

HiFT: Hierarchical Feature Transformer for Aerial Tracking Ziang Cao, Changhong Fu, Junjie Ye, Bowen Li, and Yiming Li Our paper is Accepted by ICCV 2

Intelligent Vision for Robotics in Complex Environment 55 Nov 23, 2022
A Haskell kernel for IPython.

IHaskell You can now try IHaskell directly in your browser at CoCalc or mybinder.org. Alternatively, watch a talk and demo showing off IHaskell featur

Andrew Gibiansky 2.4k Dec 29, 2022
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow.

Denoised-Smoothing-TF Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow. Denoised Smoothing is

Sayak Paul 19 Dec 11, 2022
Learning 3D Part Assembly from a Single Image

Learning 3D Part Assembly from a Single Image This repository contains a PyTorch implementation of the paper: Learning 3D Part Assembly from A Single

18 Dec 21, 2022
Improving Factual Consistency of Abstractive Text Summarization

Improving Factual Consistency of Abstractive Text Summarization We provide the code for the papers: "Entity-level Factual Consistency of Abstractive T

61 Nov 27, 2022
Pytorch Implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension)

DiffSinger - PyTorch Implementation PyTorch implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension). Status

Keon Lee 152 Jan 02, 2023
Transfer Learning Remote Sensing

Transfer_Learning_Remote_Sensing Simulation R codes for data generation and visualizations are in the folder simulation. Experiment: California Housin

2 Jun 21, 2022
Este conversor criará a medida exata para sua receita de capuccino gelado da grandiosa Rafaella Ballerini!

ConversorDeMedidas_CapuccinoGelado Este conversor criará a medida exata para sua receita de capuccino gelado da grandiosa Rafaella Ballerini! Requirem

Arthur Ottoni Ribeiro 48 Nov 15, 2022
Language-Driven Semantic Segmentation

Language-driven Semantic Segmentation (LSeg) The repo contains official PyTorch Implementation of paper Language-driven Semantic Segmentation. Authors

Intelligent Systems Lab Org 416 Jan 03, 2023
When BERT Plays the Lottery, All Tickets Are Winning

When BERT Plays the Lottery, All Tickets Are Winning Large Transformer-based models were shown to be reducible to a smaller number of self-attention h

Sai 16 Nov 10, 2022
The fastai deep learning library

Welcome to fastai fastai simplifies training fast and accurate neural nets using modern best practices Important: This documentation covers fastai v2,

fast.ai 23.2k Jan 07, 2023
An educational tool to introduce AI planning concepts using mobile manipulator robots.

JEDAI Explains Decision-Making AI Virtual Machine Image The recommended way of using JEDAI is to use pre-configured Virtual Machine image that is avai

Autonomous Agents and Intelligent Robots 13 Nov 15, 2022
Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information"

Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information" Notes I probabl

Berkeley Expert System Technologies Lab 0 Jul 01, 2021