This repository provides data for the VAW dataset as described in the CVPR 2021 paper titled "Learning to Predict Visual Attributes in the Wild"

Overview

Visual Attributes in the Wild (VAW)

This repository provides data for the VAW dataset as described in the CVPR 2021 Paper:

Learning to Predict Visual Attributes in the Wild

Khoi Pham, Kushal Kafle, Zhihong Ding, Zhe Lin, Quan Tran, Scott Cohen, Abhinav Shrivastava

VAW Main Image

Dataset Setup

Our VAW dataset is partly based on the annotations in the GQA and the VG-PhraseCut datasets.
Therefore, the images in the VAW dataset come from the Visual Genome dataset which is also the source of the images in the GQA and the VG-Phrasecut datasets. This section outlines the annotation format and basic statistics of our dataset.

Annotation Format

The annotations are found in data/train_part1.json, data/train_part2.json , data/val.json and data/test.json for train (split into two parts to circumvent github file-size limit) , validation and test splits in the VAW dataset respectively. The files consist of the following fields:

image_id: int (Image ids correspond to respective Visual Genome image ids)
instance_id: int (Unique instance ID)
instance_bbox: [x, y, width, height] (Bounding box co-ordinates for the instance)
instance_polygon: list of [x y] (List of vertices for segmentation polygon if exists else None)
object_name: str (Name of the object for the instance)
positive_attributes: list of str (Explicitly labeled positive attributes for the instance)
negative_attributes: list of str (Explicitly labeled negative attributes for the instance)

Download Images

The images can be downloaded from the Visual Genome website. The image_id field in our dataset corresponds to respective image ids in the v1.4 in the Visual Genome dataset.

Explore Data and View Live Demo

Head over to our accompanying website to explore the dataset. The website allows exploration of the VAW dataset by filtering our annotations by objects, positive attributes, or negative attributes in the train/val set. The website also shows interactive demo for our SCoNE algorithm as described in our paper.

Dataset Statistics

Basic Stats

Detail Stat
Number of Instances 260,895
Number of Total Images 72,274
Number of Unique Attributes 620
Number of Object Categories 2260
Average Annotation per Instance (Overall) 3.56
Average Annotation per Instance (Train) 3.02
Average Annotation per Instance (Val) 7.03

Evaluation

The evaluation script is provided in eval/evaluator.py. We also provide eval/eval.py as an example to show how to use the evaluation script. In particular, eval.py expects as input the followings:

  1. fpath_pred: path to the numpy array pred of your model prediction (shape (n_instances, n_class)). pred[i,j] is the predicted probability for attribute class j of instance i. We provide eval/pred.npy as a sample for this, which is the output of our best model (last row of table 2) in the paper.
  2. fpath_label: path to the numpy array gt_label that contains the groundtruth label of all instances in the test set (shape (n_instances, n_class)). gt_label[i,j] equals 1 if instance i is labeled positive with attribute j, equals 0 if it is labeled negative with attribute j, and equals 2 if it is unlabeled for attribute j. We provide eval/gt_label.npy as a sample for this, which we have created from data/test.json.
  3. Other files in folder data which have been set with default values in eval/eval.py.

From the eval folder, run the evaluation script as follows:

python eval.py --fpath_pred pred.npy --fpath_label gt_label.npy

We recently updated the grouping of attributes, So, there is a small discrepancy between the scores of our eval/pred.npy versus the numbers reported in the paper on each attribute group. A detailed attribute-wise breakdown will also be saved in a format shown in eval/output_detailed.txt.

Citation

Please cite our CVPR 2021 paper if you use the VAW dataset or the SCoNE algorithm in your work.

@InProceedings{Pham_2021_CVPR,
    author    = {Pham, Khoi and Kafle, Kushal and Lin, Zhe and Ding, Zhihong and Cohen, Scott and Tran, Quan and Shrivastava, Abhinav},
    title     = {Learning To Predict Visual Attributes in the Wild},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {13018-13028}
}

Disclaimer and Contact

This dataset contains objects labeled with a variety of attributes, including those applied to people. Datasets and their use are the subject of important ongoing discussions in the AI community, especially datasets that include people, and we hope to play an active role in those discussions. If you have any feedback regarding this dataset, we welcome your input at [email protected]

You might also like...
PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop.
PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop.

VoiceLoop PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop. VoiceLoop is a n

Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.
Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

git git《Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking》(CVPR 2021) GitHub:git2] 《Masksembles for Uncertainty Estimation》(CVPR 2021) GitHub:git3]
git git《Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking》(CVPR 2021) GitHub:git2] 《Masksembles for Uncertainty Estimation》(CVPR 2021) GitHub:git3]

Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li Accepted by CVPR

This is the official repo for TransFill:  Reference-guided Image Inpainting by Merging Multiple Color and Spatial Transformations at CVPR'21. According to some product reasons, we are not planning to release the training/testing codes and models. However, we will release the dataset and the scripts to prepare the dataset. Generative Query Network (GQN) in PyTorch as described in
Generative Query Network (GQN) in PyTorch as described in "Neural Scene Representation and Rendering"

Update 2019/06/24: A model trained on 10% of the Shepard-Metzler dataset has been added, the following notebook explains the main features of this mod

Implementation of the method described in the Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.
Implementation of the method described in the Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

A pure PyTorch implementation of the loss described in "Online Segment to Segment Neural Transduction"

ssnt-loss ℹ️ This is a WIP project. the implementation is still being tested. A pure PyTorch implementation of the loss described in "Online Segment t

Repository for the paper
Repository for the paper "PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation", CVPR 2021.

PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation Code repository for the paper: PoseAug: A Differentiable Pose Augme

Repository of our paper 'Refer-it-in-RGBD' in CVPR 2021
Repository of our paper 'Refer-it-in-RGBD' in CVPR 2021

Refer-it-in-RGBD This is the repository of our paper 'Refer-it-in-RGBD: A Bottom-up Approach for 3D Visual Grounding in RGBD Images' in CVPR 2021 Pape

Comments
  • Attribute super-class

    Attribute super-class

    Hi, Thank you for releasing the attribute annotations. A am very interested in the dataset. Are you also planning to release the superclass list of attributes from the paper (the Class imbalance and Attribute types)? And could you provide your evaluation code to reproduce your results and use the dataset?

    Best, Maria

    question 
    opened by mabravo641 1
  • Inference details

    Inference details

    Hi @kushalkafle, thanks for your great works of VAW and LSA. And I have some questions about the inference details of the SCoNE and TAP. During inference, For SCoNE, did you crop out the object region first and then evaluate the precision of the method for each bounding box? For TAP and OpenTAP, did you just input the test image and multi objects with bounding boxes, then the model will output the attributes of each object? I wonder if the above conjectures match the real experimental design. Looking forward to your reply and thanks in advance!

    opened by waveboo 0
  • object name embedding

    object name embedding

    Hi, I am a little confused about the object embedding procedure. As mentioned in the paper, GloVe 100-d word embeddings are used as the object name embedding. However, some of the object names are not contained in the Glove embeddings. How to tackle these names? For example, 'american flag', "boy's arm", 'two suitcases', 'computer keyboard', 'larger horse', 'living room wall', 'navy blue shirt', 'of the aisle', 'hotdog bun', 'train station', 'skull picture', 'disney princess', 'neck tie'.

    Thanks.

    opened by GriffinLiang 0
Releases(v1.0)
Simple reimplemetation experiments about FcaNet

FcaNet-CIFAR An implementation of the paper FcaNet: Frequency Channel Attention Networks on CIFAR10/CIFAR100 dataset. how to run Code: python Cifar.py

76 Feb 04, 2021
Project of 'TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement '

TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement Codes for TMM20 paper "TBEFN: A Two-branch Exposure-fusion Network for Low

KUN LU 31 Nov 06, 2022
Mining-the-Social-Web-3rd-Edition - The official online compendium for Mining the Social Web, 3rd Edition (O'Reilly, 2018)

Mining the Social Web, 3rd Edition The official code repository for Mining the Social Web, 3rd Edition (O'Reilly, 2019). The book is available from Am

Mikhail Klassen 838 Jan 01, 2023
[CVPR2021 Oral] End-to-End Video Instance Segmentation with Transformers

VisTR: End-to-End Video Instance Segmentation with Transformers This is the official implementation of the VisTR paper: Installation We provide instru

Yuqing Wang 687 Jan 07, 2023
Rule Based Classification Project

Kural Tabanlı Sınıflandırma ile Potansiyel Müşteri Getirisi Hesaplama İş Problemi: Bir oyun şirketi müşterilerinin bazı özelliklerini kullanaraknseviy

Şafak 1 Jan 12, 2022
Cookiecutter PyTorch Lightning

Cookiecutter PyTorch Lightning Instructions # install cookiecutter pip install cookiecutter

Mazen 8 Nov 06, 2022
Self-supervised Product Quantization for Deep Unsupervised Image Retrieval - ICCV2021

Self-supervised Product Quantization for Deep Unsupervised Image Retrieval Pytorch implementation of SPQ Accepted to ICCV 2021 - paper Young Kyun Jang

Young Kyun Jang 71 Dec 27, 2022
Scalable training for dense retrieval models.

Scalable implementation of dense retrieval. Training on cluster By default it trains locally: PYTHONPATH=.:$PYTHONPATH python dpr_scale/main.py traine

Facebook Research 90 Dec 28, 2022
Pytorch implementation of Generative Models as Distributions of Functions 🌿

Generative Models as Distributions of Functions This repo contains code to reproduce all experiments in Generative Models as Distributions of Function

Emilien Dupont 117 Dec 29, 2022
Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization

Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization Code for reproducing our results in the Head2Toe paper. Paper: arxiv.or

Google Research 62 Dec 12, 2022
FastReID is a research platform that implements state-of-the-art re-identification algorithms.

FastReID is a research platform that implements state-of-the-art re-identification algorithms.

JDAI-CV 2.8k Jan 07, 2023
Shitty gaze mouse controller

demo.mp4 shitty_gaze_mouse_cotroller install tensofflow, cv2 run the main.py and as it starts it will collect data so first raise your left eyebrow(bo

16 Aug 30, 2022
Alpha-Zero - Telegram Group Manager Bot Written In Python Using Pyrogram

✨ Alpha Zero Bot ✨ Telegram Group Manager Bot + Userbot Written In Python Using

1 Feb 17, 2022
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica

Kuan-Lin (Jason) Chen 2 Oct 02, 2022
NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size

NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size Xuanyi Dong, Lu Liu, Katarzyna Musial, Bogdan Gabrys in IEEE Transactions o

D-X-Y 137 Dec 20, 2022
This is the official pytorch implementation of Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation(TESKD)

Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation (TESKD) By Zheng Li[1,4], Xiang Li[2], Lingfeng Yang[2,4], Jian Yang[2], Zh

Zheng Li 9 Sep 26, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
Deep Learning pipeline for motor-imagery classification.

BCI-ToolBox 1. Introduction BCI-ToolBox is deep learning pipeline for motor-imagery classification. This repo contains five models: ShallowConvNet, De

DongHee 18 Oct 31, 2022
Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion

Feature-Style Encoder for Style-Based GAN Inversion Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion. Code will

InterDigital 63 Jan 03, 2023
PyTorch implementation for our paper Learning Character-Agnostic Motion for Motion Retargeting in 2D, SIGGRAPH 2019

Learning Character-Agnostic Motion for Motion Retargeting in 2D We provide PyTorch implementation for our paper Learning Character-Agnostic Motion for

Rundi Wu 367 Dec 22, 2022