This repository provides data for the VAW dataset as described in the CVPR 2021 paper titled "Learning to Predict Visual Attributes in the Wild"

Overview

Visual Attributes in the Wild (VAW)

This repository provides data for the VAW dataset as described in the CVPR 2021 Paper:

Learning to Predict Visual Attributes in the Wild

Khoi Pham, Kushal Kafle, Zhihong Ding, Zhe Lin, Quan Tran, Scott Cohen, Abhinav Shrivastava

VAW Main Image

Dataset Setup

Our VAW dataset is partly based on the annotations in the GQA and the VG-PhraseCut datasets.
Therefore, the images in the VAW dataset come from the Visual Genome dataset which is also the source of the images in the GQA and the VG-Phrasecut datasets. This section outlines the annotation format and basic statistics of our dataset.

Annotation Format

The annotations are found in data/train_part1.json, data/train_part2.json , data/val.json and data/test.json for train (split into two parts to circumvent github file-size limit) , validation and test splits in the VAW dataset respectively. The files consist of the following fields:

image_id: int (Image ids correspond to respective Visual Genome image ids)
instance_id: int (Unique instance ID)
instance_bbox: [x, y, width, height] (Bounding box co-ordinates for the instance)
instance_polygon: list of [x y] (List of vertices for segmentation polygon if exists else None)
object_name: str (Name of the object for the instance)
positive_attributes: list of str (Explicitly labeled positive attributes for the instance)
negative_attributes: list of str (Explicitly labeled negative attributes for the instance)

Download Images

The images can be downloaded from the Visual Genome website. The image_id field in our dataset corresponds to respective image ids in the v1.4 in the Visual Genome dataset.

Explore Data and View Live Demo

Head over to our accompanying website to explore the dataset. The website allows exploration of the VAW dataset by filtering our annotations by objects, positive attributes, or negative attributes in the train/val set. The website also shows interactive demo for our SCoNE algorithm as described in our paper.

Dataset Statistics

Basic Stats

Detail Stat
Number of Instances 260,895
Number of Total Images 72,274
Number of Unique Attributes 620
Number of Object Categories 2260
Average Annotation per Instance (Overall) 3.56
Average Annotation per Instance (Train) 3.02
Average Annotation per Instance (Val) 7.03

Evaluation

The evaluation script is provided in eval/evaluator.py. We also provide eval/eval.py as an example to show how to use the evaluation script. In particular, eval.py expects as input the followings:

  1. fpath_pred: path to the numpy array pred of your model prediction (shape (n_instances, n_class)). pred[i,j] is the predicted probability for attribute class j of instance i. We provide eval/pred.npy as a sample for this, which is the output of our best model (last row of table 2) in the paper.
  2. fpath_label: path to the numpy array gt_label that contains the groundtruth label of all instances in the test set (shape (n_instances, n_class)). gt_label[i,j] equals 1 if instance i is labeled positive with attribute j, equals 0 if it is labeled negative with attribute j, and equals 2 if it is unlabeled for attribute j. We provide eval/gt_label.npy as a sample for this, which we have created from data/test.json.
  3. Other files in folder data which have been set with default values in eval/eval.py.

From the eval folder, run the evaluation script as follows:

python eval.py --fpath_pred pred.npy --fpath_label gt_label.npy

We recently updated the grouping of attributes, So, there is a small discrepancy between the scores of our eval/pred.npy versus the numbers reported in the paper on each attribute group. A detailed attribute-wise breakdown will also be saved in a format shown in eval/output_detailed.txt.

Citation

Please cite our CVPR 2021 paper if you use the VAW dataset or the SCoNE algorithm in your work.

@InProceedings{Pham_2021_CVPR,
    author    = {Pham, Khoi and Kafle, Kushal and Lin, Zhe and Ding, Zhihong and Cohen, Scott and Tran, Quan and Shrivastava, Abhinav},
    title     = {Learning To Predict Visual Attributes in the Wild},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {13018-13028}
}

Disclaimer and Contact

This dataset contains objects labeled with a variety of attributes, including those applied to people. Datasets and their use are the subject of important ongoing discussions in the AI community, especially datasets that include people, and we hope to play an active role in those discussions. If you have any feedback regarding this dataset, we welcome your input at [email protected]

You might also like...
PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop.
PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop.

VoiceLoop PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop. VoiceLoop is a n

Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.
Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

git git《Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking》(CVPR 2021) GitHub:git2] 《Masksembles for Uncertainty Estimation》(CVPR 2021) GitHub:git3]
git git《Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking》(CVPR 2021) GitHub:git2] 《Masksembles for Uncertainty Estimation》(CVPR 2021) GitHub:git3]

Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li Accepted by CVPR

This is the official repo for TransFill:  Reference-guided Image Inpainting by Merging Multiple Color and Spatial Transformations at CVPR'21. According to some product reasons, we are not planning to release the training/testing codes and models. However, we will release the dataset and the scripts to prepare the dataset. Generative Query Network (GQN) in PyTorch as described in
Generative Query Network (GQN) in PyTorch as described in "Neural Scene Representation and Rendering"

Update 2019/06/24: A model trained on 10% of the Shepard-Metzler dataset has been added, the following notebook explains the main features of this mod

Implementation of the method described in the Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.
Implementation of the method described in the Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

A pure PyTorch implementation of the loss described in "Online Segment to Segment Neural Transduction"

ssnt-loss ℹ️ This is a WIP project. the implementation is still being tested. A pure PyTorch implementation of the loss described in "Online Segment t

Repository for the paper
Repository for the paper "PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation", CVPR 2021.

PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation Code repository for the paper: PoseAug: A Differentiable Pose Augme

Repository of our paper 'Refer-it-in-RGBD' in CVPR 2021
Repository of our paper 'Refer-it-in-RGBD' in CVPR 2021

Refer-it-in-RGBD This is the repository of our paper 'Refer-it-in-RGBD: A Bottom-up Approach for 3D Visual Grounding in RGBD Images' in CVPR 2021 Pape

Comments
  • Attribute super-class

    Attribute super-class

    Hi, Thank you for releasing the attribute annotations. A am very interested in the dataset. Are you also planning to release the superclass list of attributes from the paper (the Class imbalance and Attribute types)? And could you provide your evaluation code to reproduce your results and use the dataset?

    Best, Maria

    question 
    opened by mabravo641 1
  • Inference details

    Inference details

    Hi @kushalkafle, thanks for your great works of VAW and LSA. And I have some questions about the inference details of the SCoNE and TAP. During inference, For SCoNE, did you crop out the object region first and then evaluate the precision of the method for each bounding box? For TAP and OpenTAP, did you just input the test image and multi objects with bounding boxes, then the model will output the attributes of each object? I wonder if the above conjectures match the real experimental design. Looking forward to your reply and thanks in advance!

    opened by waveboo 0
  • object name embedding

    object name embedding

    Hi, I am a little confused about the object embedding procedure. As mentioned in the paper, GloVe 100-d word embeddings are used as the object name embedding. However, some of the object names are not contained in the Glove embeddings. How to tackle these names? For example, 'american flag', "boy's arm", 'two suitcases', 'computer keyboard', 'larger horse', 'living room wall', 'navy blue shirt', 'of the aisle', 'hotdog bun', 'train station', 'skull picture', 'disney princess', 'neck tie'.

    Thanks.

    opened by GriffinLiang 0
Releases(v1.0)
MoveNetを用いたPythonでの姿勢推定のデモ

MoveNet-Python-Example MoveNetのPythonでの動作サンプルです。 ONNXに変換したモデルも同梱しています。変換自体を試したい方はMoveNet_tf2onnx.ipynbを使用ください。 2021/08/24時点でTensorFlow Hubで提供されている以下モデ

KazuhitoTakahashi 38 Dec 17, 2022
Code Repo for the ACL21 paper "Common Sense Beyond English: Evaluating and Improving Multilingual LMs for Commonsense Reasoning"

Common Sense Beyond English: Evaluating and Improving Multilingual LMs for Commonsense Reasoning This is the Github repository of our paper, "Common S

INK Lab @ USC 19 Nov 30, 2022
H&M Fashion Image similarity search with Weaviate and DocArray

H&M Fashion Image similarity search with Weaviate and DocArray This example shows how to do image similarity search using DocArray and Weaviate as Doc

Laura Ham 18 Aug 11, 2022
Disentangled Face Attribute Editing via Instance-Aware Latent Space Search, accepted by IJCAI 2021.

Instance-Aware Latent-Space Search This is a PyTorch implementation of the following paper: Disentangled Face Attribute Editing via Instance-Aware Lat

67 Dec 21, 2022
Official repository for "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems"

Action-Based Conversations Dataset (ABCD) This respository contains the code and data for ABCD (Chen et al., 2021) Introduction Whereas existing goal-

ASAPP Research 49 Oct 09, 2022
RIM: Reliable Influence-based Active Learning on Graphs.

RIM: Reliable Influence-based Active Learning on Graphs. This repository is the official implementation of RIM. Requirements To install requirements:

Wentao Zhang 4 Aug 29, 2022
a project for 3D multi-object tracking

a project for 3D multi-object tracking

155 Jan 04, 2023
Public Code for NIPS submission SimiGrad: Fine-Grained Adaptive Batching for Large ScaleTraining using Gradient Similarity Measurement

Public code for NIPS submission "SimiGrad: Fine-Grained Adaptive Batching for Large Scale Training using Gradient Similarity Measurement" This repo co

Heyang Qin 0 Oct 13, 2021
Reinforcement Learning for the Blackjack

Reinforcement Learning for Blackjack Author: ZHA Mengyue Math Department of HKUST Problem Statement We study playing Blackjack by reinforcement learni

Dolores 3 Jan 24, 2022
ICNet for Real-Time Semantic Segmentation on High-Resolution Images, ECCV2018

ICNet for Real-Time Semantic Segmentation on High-Resolution Images by Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping Shi, Jiaya Jia, details a

Hengshuang Zhao 594 Dec 31, 2022
Code & Models for Temporal Segment Networks (TSN) in ECCV 2016

Temporal Segment Networks (TSN) We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation fo

1.4k Jan 01, 2023
Scale-aware Automatic Augmentation for Object Detection (CVPR 2021)

SA-AutoAug Scale-aware Automatic Augmentation for Object Detection Yukang Chen, Yanwei Li, Tao Kong, Lu Qi, Ruihang Chu, Lei Li, Jiaya Jia [Paper] [Bi

DV Lab 182 Dec 29, 2022
Official Repository of NeurIPS2021 paper: PTR

PTR: A Benchmark for Part-based Conceptual, Relational, and Physical Reasoning Figure 1. Dataset Overview. Introduction A critical aspect of human vis

Yining Hong 32 Jun 02, 2022
Visyerres sgdf woob - Modules Woob pour l'intranet et autres sites Scouts et Guides de France

Vis'Yerres SGDF - Modules Woob Vous avez le sentiment que l'intranet des Scouts

Thomas Touhey (pas un pseudonyme) 3 Dec 24, 2022
Namish Khanna 40 Oct 11, 2022
Continuous Diffusion Graph Neural Network

We present Graph Neural Diffusion (GRAND) that approaches deep learning on graphs as a continuous diffusion process and treats Graph Neural Networks (GNNs) as discretisations of an underlying PDE.

Twitter Research 227 Jan 05, 2023
PyTorch and Tensorflow functional model definitions

functional-zoo Model definitions and pretrained weights for PyTorch and Tensorflow PyTorch, unlike lua torch, has autograd in it's core, so using modu

Sergey Zagoruyko 590 Dec 22, 2022
This is the repo of the manuscript "Dual-branch Attention-In-Attention Transformer for speech enhancement"

DB-AIAT: A Dual-branch attention-in-attention transformer for single-channel SE

Guochen Yu 68 Dec 16, 2022
Improving Non-autoregressive Generation with Mixup Training

MIST Training MIST TRAIN_FILE=/your/path/to/train.json VALID_FILE=/your/path/to/valid.json OUTPUT_DIR=/your/path/to/save_checkpoints CACHE_DIR=/your/p

7 Nov 22, 2022
TensorFlow (Python API) implementation of Neural Style

neural-style-tf This is a TensorFlow implementation of several techniques described in the papers: Image Style Transfer Using Convolutional Neural Net

Cameron 3.1k Jan 02, 2023