This is the repo of the manuscript "Dual-branch Attention-In-Attention Transformer for speech enhancement"

Related tags

Deep LearningDB-AIAT
Overview

DB-AIAT: A Dual-branch attention-in-attention transformer for single-channel SE (https://arxiv.org/abs/2110.06467)

This is the repo of the manuscript "Dual-branch Attention-In-Attention Transformer for speech enhancement", which is accepted by ICASSP2022.

Abstract:Curriculum learning begins to thrive in the speech enhancement area, which decouples the original spectrum estimation task into multiple easier sub-tasks to achieve better performance. Motivated by that, we propose a dual-branch attention-in-attention transformer-based module dubbed DB-AIAT to handle both coarse- and fine-grained regions of spectrum in parallel. From a complementary perspective, a magnitude masking branch is proposed to estimate the overall spectral magnitude, while a complex refining branch is designed to compensate for the missing complex spectral details and implicitly derive phase information. Within each branch, we propose a novel attention-in-attention transformer-based module to replace the conventional RNNs and temporal convolutional network for temporal sequence modeling. Specifically, the proposed attention-in-attention transformer consists of adaptive temporal-frequency attention transformer blocks and an adaptive hierarchical attention module, which can capture long-term time-frequency dependencies and further aggregate global hierarchical contextual information. The experimental results on VoiceBank + Demand dataset show that DB-AIAT yields state-of-the-art performance (e.g., 3.31 PESQ, 95.6% STOI and 10.79dB SSNR) over previous advanced systems with a relatively light model size (2.81M).

Code:

You can use dual_aia_trans_merge_crm() in aia_trans.py for dual-branch SE, while aia_complex_trans_mag() and aia_complex_trans_ri() are single-branch aprroaches. The trained weights on VB dataset is also provided. You can directly perform inference or finetune the model by using vb_aia_merge_new.pth.tar.

requirements:

CUDA 10.1
torch == 1.8.0
pesq == 0.0.1
librosa == 0.7.2
SoundFile == 0.10.3

How to train

Step1

prepare your data. Run json_extract.py to generate json files, which records the utterance file names for both training and validation set

# Run json_extract.py
json_extract.py

Step2

change the parameter settings accroding to your directory (within config_merge.py)

Step3

Network Training (you can also use aia_complex_trans_mag() and aia_complex_trans_ri() network in aia_trans.py for single-branch SE)

# Run main.py to begin network training 
# solver_merge.py and train_merge.py contain detailed training process
main_merge.py

Inference:

The trained weights vb_aia_merge_new.pth.tar on VB dataset is also provided in BEST_MODEL.

# Run main.py to enhance the noisy speech samples.
enhance.py 

Comparison with SOTA:

image

Citation

If you use our code in your research or wish to refer to the baseline results, please use the following BibTeX entry.

@article{yu2021dual,
title={Dual-branch Attention-In-Attention Transformer for single-channel speech enhancement},
author={Yu, Guochen and Li, Andong and Wang, Yutian and Guo, Yinuo and Wang, Hui and Zheng, Chengshi},
journal={arXiv preprint arXiv:2110.06467},
year={2021}
}
Owner
Guochen Yu
Phd of Communication University of China and Key Laboratory of Noise and Vibration Research, Institute of Acoustics, Chinese Academy of Sciences
Guochen Yu
This repository contains the implementation of the HealthGen model, a generative model to synthesize realistic EHR time series data with missingness

HealthGen: Conditional EHR Time Series Generation This repository contains the implementation of the HealthGen model, a generative model to synthesize

0 Jan 20, 2022
This is a package for LiDARTag, described in paper: LiDARTag: A Real-Time Fiducial Tag System for Point Clouds

LiDARTag Overview This is a package for LiDARTag, described in paper: LiDARTag: A Real-Time Fiducial Tag System for Point Clouds (PDF)(arXiv). This wo

University of Michigan Dynamic Legged Locomotion Robotics Lab 159 Dec 21, 2022
TensorFlow2 Classification Model Zoo playing with TensorFlow2 on the CIFAR-10 dataset.

Training CIFAR-10 with TensorFlow2(TF2) TensorFlow2 Classification Model Zoo. I'm playing with TensorFlow2 on the CIFAR-10 dataset. Architectures LeNe

Chia-Hung Yuan 16 Sep 27, 2022
A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers.

ViTGAN: Training GANs with Vision Transformers A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers. Refer

Hong-Jia Chen 127 Dec 23, 2022
Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020).

SentiBERT Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020). https://arxiv.org/abs/20

Da Yin 66 Aug 13, 2022
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
AFLFast (extends AFL with Power Schedules)

AFLFast Power schedules implemented by Marcel Böhme [email protected]

Marcel Böhme 380 Jan 03, 2023
This is the pytorch code for the paper Curious Representation Learning for Embodied Intelligence.

Curious Representation Learning for Embodied Intelligence This is the pytorch code for the paper Curious Representation Learning for Embodied Intellig

19 Oct 19, 2022
Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction

GraviCap Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction. Gravity-Aware Monocular 3D Human-Object

Rishabh Dabral 15 Dec 09, 2022
A PyTorch implementation of DenseNet.

A PyTorch Implementation of DenseNet This is a PyTorch implementation of the DenseNet-BC architecture as described in the paper Densely Connected Conv

Brandon Amos 771 Dec 15, 2022
Bagua is a flexible and performant distributed training algorithm development framework.

Bagua is a flexible and performant distributed training algorithm development framework.

786 Dec 17, 2022
PyTorch implementation of our Adam-NSCL algorithm from our CVPR2021 (oral) paper "Training Networks in Null Space for Continual Learning"

Adam-NSCL This is a PyTorch implementation of Adam-NSCL algorithm for continual learning from our CVPR2021 (oral) paper: Title: Training Networks in N

Shipeng Wang 34 Dec 21, 2022
The world's simplest facial recognition api for Python and the command line

Face Recognition You can also read a translated version of this file in Chinese 简体中文版 or in Korean 한국어 or in Japanese 日本語. Recognize and manipulate fa

Adam Geitgey 46.9k Jan 03, 2023
Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters"

Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters" Pipeline of CLIP-Adapter CLIP-Adapter is a drop-in modul

peng gao 157 Dec 26, 2022
This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian Sign Language.

LIBRAS-Image-Classifier This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian

Aryclenio Xavier Barros 26 Oct 14, 2022
Generating Images with Recurrent Adversarial Networks

Generating Images with Recurrent Adversarial Networks Python (Theano) implementation of Generating Images with Recurrent Adversarial Networks code pro

Daniel Jiwoong Im 121 Sep 08, 2022
AirLoop: Lifelong Loop Closure Detection

AirLoop This repo contains the source code for paper: Dasong Gao, Chen Wang, Sebastian Scherer. "AirLoop: Lifelong Loop Closure Detection." arXiv prep

Chen Wang 53 Jan 03, 2023
PyTorch implementation of EigenGAN

PyTorch Implementation of EigenGAN Train python train.py [image_folder_path] --name [experiment name] Test python test.py [ckpt path] --traverse FFH

62 Nov 12, 2022
A simple baseline for 3d human pose estimation in PyTorch.

3d_pose_baseline_pytorch A PyTorch implementation of a simple baseline for 3d human pose estimation. You can check the original Tensorflow implementat

weigq 312 Jan 06, 2023
[CVPR 2022] Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement

Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement Announcement 🔥 We have not tested the code yet. We will fini

Xiuwei Xu 7 Oct 30, 2022