Code & Models for Temporal Segment Networks (TSN) in ECCV 2016

Overview

Temporal Segment Networks (TSN)

We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation for TSN as well as other STOA frameworks for various tasks. We highly recommend you switch to it. This repo will keep on being suppported for Caffe users.

This repository holds the codes and models for the papers

Temporal Segment Networks for Action Recognition in Videos, Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, and Luc Van Gool, TPAMI, 2018.

[Arxiv Preprint]

Temporal Segment Networks: Towards Good Practices for Deep Action Recognition, Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, and Luc Van Gool, ECCV 2016, Amsterdam, Netherlands.

[Arxiv Preprint]

News & Updates

Jul. 20, 2018 - For those having trouble building the TSN toolkit, we have provided a built docker image you can use. Download it from DockerHub. It contains OpenCV, Caffe, DenseFlow, and this codebase. All built and ready to use with NVIDIA-Docker

Sep. 8, 2017 - We released TSN models trained on the Kinetics dataset with 76.6% single model top-1 accuracy. Find the model weights and transfer learning experiment results on the website.

Aug 10, 2017 - An experimental pytorch implementation of TSN is released github

Nov. 5, 2016 - The project page for TSN is online. website

Sep. 14, 2016 - We fixed a legacy bug in Caffe. Some parameters in TSN training are affected. You are advised to update to the latest version.

FAQ, How to add a custom dataset

Below is the guidance to reproduce the reported results and explore more.

Contents


Usage Guide

Prerequisites

[back to top]

There are a few dependencies to run the code. The major libraries we use are

The codebase is written in Python. We recommend the Anaconda Python distribution. Matlab scripts are provided for some critical steps like video-level testing.

The most straightforward method to install these libraries is to run the build-all.sh script.

Besides software, GPU(s) are required for optical flow extraction and model training. Our Caffe modification supports highly efficient parallel training. Just throw in as many GPUs as you like and enjoy.

Code & Data Preparation

Get the code

[back to top]

Use git to clone this repository and its submodules

git clone --recursive https://github.com/yjxiong/temporal-segment-networks

Then run the building scripts to build the libraries.

bash build_all.sh

It will build Caffe and dense_flow. Since we need OpenCV to have Video IO, which is absent in most default installations, it will also download and build a local installation of OpenCV and use its Python interfaces.

Note that to run training with multiple GPUs, one needs to enable MPI support of Caffe. To do this, run

MPI_PREFIX=<root path to openmpi installation> bash build_all.sh MPI_ON

Get the videos

[back to top]

We experimented on two mainstream action recognition datasets: UCF-101 and HMDB51. Videos can be downloaded directly from their websites. After download, please extract the videos from the rar archives.

  • UCF101: the ucf101 videos are archived in the downloaded file. Please use unrar x UCF101.rar to extract the videos.
  • HMDB51: the HMDB51 video archive has two-level of packaging. The following commands illustrate how to extract the videos.
mkdir rars && mkdir videos
unrar x hmdb51-org.rar rars/
for a in $(ls rars); do unrar x "rars/${a}" videos/; done;

Get trained models

[back to top]

We provided the trained model weights in Caffe style, consisting of specifications in Protobuf messages, and model weights. In the codebase we provide the model spec for UCF101 and HMDB51. The model weights can be downloaded by running the script

bash scripts/get_reference_models.sh

Extract Frames and Optical Flow Images

[back to top]

To run the training and testing, we need to decompose the video into frames. Also the temporal stream networks need optical flow or warped optical flow images for input.

These can be achieved with the script scripts/extract_optical_flow.sh. The script has three arguments

  • SRC_FOLDER points to the folder where you put the video dataset
  • OUT_FOLDER points to the root folder where the extracted frames and optical images will be put in
  • NUM_WORKER specifies the number of GPU to use in parallel for flow extraction, must be larger than 1

The command for running optical flow extraction is as follows

bash scripts/extract_optical_flow.sh SRC_FOLDER OUT_FOLDER NUM_WORKER

It will take from several hours to several days to extract optical flows for the whole datasets, depending on the number of GPUs.

Testing Provided Models

Get reference models

[back to top]

To help reproduce the results reported in the paper, we provide reference models trained by us for instant testing. Please use the following command to get the reference models.

bash scripts/get_reference_models.sh

Video-level testing

[back to top]

We provide a Python framework to run the testing. For the benchmark datasets, we will measure average accuracy on the testing splits. We also provide the facility to analyze a single video.

Generally, to test on the benchmark dataset, we can use the scripts eval_net.py and eval_scores.py.

For example, to test the reference rgb stream model on split 1 of ucf 101 with 4 GPUs, run

python tools/eval_net.py ucf101 1 rgb FRAME_PATH \
 models/ucf101/tsn_bn_inception_rgb_deploy.prototxt models/ucf101_split_1_tsn_rgb_reference_bn_inception.caffemodel \
 --num_worker 4 --save_scores SCORE_FILE

where FRAME_PATH is the path you extracted the frames of UCF-101 to and SCORE_FILE is the filename to store the extracted scores.

One can also use cached score files to evaluate the performance. To do this, issue the following command

python tools/eval_scores.py SCORE_FILE

The more important function of eval_scores.py is to do modality fusion. For example, once we got the scores of rgb stream in RGB_SCORE_FILE and flow stream in FLOW_SCORE_FILE. The fusion result with weights of 1:1.5 can be achieved with

python tools/eval_scores.py RGB_SCORE_FILE FLOW_SCORE_FILE --score_weights 1 1.5

To view the full help message of these scripts, run python eval_net.py -h or python eval_scores.py -h.

Training Temporal Segment Networks

[back to top]

Training TSN is straightforward. We have provided the necessary model specs, solver configs, and initialization models. To achieve optimal training speed, we strongly advise you to turn on the parallel training support in the Caffe toolbox using following build command

MPI_PREFIX=<root path to openmpi installation> bash build_all.sh MPI_ON

where root path to openmpi installation points to the installation of the OpenMPI, for example /usr/local/openmpi/.

Construct file lists for training and validation

[back to top]

The data feeding in training relies on VideoDataLayer in Caffe. This layer uses a list file to specify its data sources. Each line of the list file will contain a tuple of extracted video frame path, video frame number, and video groundtruth class. A list file looks like

video_frame_path 100 10
video_2_frame_path 150 31
...

To build the file lists for all 3 splits of the two benchmark dataset, we have provided a script. Just use the following command

bash scripts/build_file_list.sh ucf101 FRAME_PATH

and

bash scripts/build_file_list.sh hmdb51 FRAME_PATH

The generated list files will be put in data/ with names like ucf101_flow_val_split_2.txt.

Get initialization models

[back to top]

We have built the initialization model weights for both rgb and flow input. The flow initialization models implements the cross-modality training technique in the paper. To download the model weights, run

bash scripts/get_init_models.sh

Start training

[back to top]

Once all necessities ready, we can start training TSN. For this, use the script scripts/train_tsn.sh. For example, the following command runs training on UCF101 with rgb input

bash scripts/train_tsn.sh ucf101 rgb

the training will run with default settings on 4 GPUs. Usually, it takes around 1 hours to train the rgb model and 4 hours for flow models, on 4 GTX Titan X GPUs.

The learned model weights will be saved in models/. The aforementioned testing process can be used to evaluate them.

Config the training process

[back to top]

Here we provide some information on customizing the training process

  • Change split: By default, the training is conducted on split 1 of the datasets. To change the split, one can modify corresponding model specs and solver files. For example, to train on split 2 of UCF101 with rgb input, one can modify the file models/ucf101/tsn_bn_inception_rgb_train_val.prototxt. On line 8, change
source: "data/ucf101_rgb_train_split_1.txt"`

to

`source: "data/ucf101_rgb_train_split_2.txt"`

On line 34, change

source: "data/ucf101_rgb_val_split_1.txt"

to

source: "data/ucf101_rgb_val_split_2.txt"

Also, in the solver file models/ucf101/tsn_bn_inception_rgb_solver.prototxt, on line 12 change

snapshot_prefix: "models/ucf101_split1_tsn_rgb_bn_inception"

to

snapshot_prefix: "models/ucf101_split2_tsn_rgb_bn_inception"

in order to distiguish the learned weights.

  • Change GPU number, in general, one can use any number of GPU to do the training. To use more or less GPU, one can change the N_GPU in scripts/train_tsn.sh. Important notice: when the GPU number is changed, the effective batchsize is also changed. It's better to always make sure the effective batchsize, which equals to batch_size*iter_size*n_gpu, to be 128. Here, batch_size is the number in the model's prototxt, for example line 9 in models/ucf101/tsn_bn_inception_rgb_train_val.protoxt.

Other Info

[back to top]

Citation

Please cite the following paper if you feel this repository useful.

@inproceedings{TSN2016ECCV,
  author    = {Limin Wang and
               Yuanjun Xiong and
               Zhe Wang and
               Yu Qiao and
               Dahua Lin and
               Xiaoou Tang and
               Luc {Val Gool}},
  title     = {Temporal Segment Networks: Towards Good Practices for Deep Action Recognition},
  booktitle   = {ECCV},
  year      = {2016},
}

Related Projects

Contact

For any question, please contact

Yuanjun Xiong: [email protected]
Limin Wang: [email protected]
Owner
Young and simple. [email protected] -> Amazon Rekognition. We are hiring summer interns for 20
Code for SALT: Stackelberg Adversarial Regularization, EMNLP 2021.

SALT: Stackelberg Adversarial Regularization Code for Adversarial Regularization as Stackelberg Game: An Unrolled Optimization Approach, EMNLP 2021. R

Simiao Zuo 10 Jan 10, 2022
SSL_SLAM2: Lightweight 3-D Localization and Mapping for Solid-State LiDAR (mapping and localization separated) ICRA 2021

SSL_SLAM2 Lightweight 3-D Localization and Mapping for Solid-State LiDAR (Intel Realsense L515 as an example) This repo is an extension work of SSL_SL

Wang Han 王晗 1.3k Jan 08, 2023
Supervised & unsupervised machine-learning techniques are applied to the database of weighted P4s which admit Calabi-Yau hypersurfaces.

Weighted Projective Spaces ML Description: The database of 5-vectors describing 4d weighted projective spaces which admit Calabi-Yau hypersurfaces are

Ed Hirst 3 Sep 08, 2022
An end-to-end implementation of intent prediction with Metaflow and other cool tools

You Don't Need a Bigger Boat An end-to-end (Metaflow-based) implementation of an intent prediction flow for kids who can't MLOps good and wanna learn

Jacopo Tagliabue 614 Dec 31, 2022
SimulLR - PyTorch Implementation of SimulLR

PyTorch Implementation of SimulLR There is an interesting work[1] about simultan

11 Dec 22, 2022
This repository contains the code for the CVPR 2021 paper "GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields"

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields Project Page | Paper | Supplementary | Video | Slides | Blog | Talk If

1.1k Dec 30, 2022
Code for our CVPR2021 paper coordinate attention

Coordinate Attention for Efficient Mobile Network Design (preprint) This repository is a PyTorch implementation of our coordinate attention (will appe

Qibin (Andrew) Hou 726 Jan 05, 2023
Diffusion Probabilistic Models for 3D Point Cloud Generation (CVPR 2021)

Diffusion Probabilistic Models for 3D Point Cloud Generation [Paper] [Code] The official code repository for our CVPR 2021 paper "Diffusion Probabilis

Shitong Luo 323 Jan 05, 2023
Implementation of popular bandit algorithms in batch environments.

batch-bandits Implementation of popular bandit algorithms in batch environments. Source code to our paper "The Impact of Batch Learning in Stochastic

Danil Provodin 2 Sep 11, 2022
Clean Machine Learning, a Coding Kata

Kata: Clean Machine Learning From Dirty Code First, open the Kata in Google Colab (or else download it) You can clone this project and launch jupyter-

Neuraxio 13 Nov 03, 2022
using yolox+deepsort for object-tracker

YOLOX_deepsort_tracker yolox+deepsort实现目标跟踪 最新的yolox尝尝鲜~~(yolox正处在频繁更新阶段,因此直接链接yolox仓库作为子模块) Install Clone the repository recursively: git clone --rec

245 Dec 26, 2022
The official codes for the ICCV2021 Oral presentation "Rethinking Counting and Localization in Crowds: A Purely Point-Based Framework"

P2PNet (ICCV2021 Oral Presentation) This repository contains codes for the official implementation in PyTorch of P2PNet as described in Rethinking Cou

Tencent YouTu Research 208 Dec 26, 2022
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
[ICLR 2021] Is Attention Better Than Matrix Decomposition?

Enjoy-Hamburger 🍔 Official implementation of Hamburger, Is Attention Better Than Matrix Decomposition? (ICLR 2021) Under construction. Introduction T

Gsunshine 271 Dec 29, 2022
State of the art Semantic Sentence Embeddings

Contrastive Tension State of the art Semantic Sentence Embeddings Published Paper · Huggingface Models · Report Bug Overview This is the official code

Fredrik Carlsson 88 Dec 30, 2022
PyTorchMemTracer - Depict GPU memory footprint during DNN training of PyTorch

A Memory Tracer For PyTorch OOM is a nightmare for PyTorch users. However, most

Jiarui Fang 9 Nov 14, 2022
3D detection and tracking viewer (visualization) for kitti & waymo dataset

3D detection and tracking viewer (visualization) for kitti & waymo dataset

222 Jan 08, 2023
Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis in JAX

SYMPAIS: Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis Overview | Installation | Documentation | Examples | Notebo

Yicheng Luo 4 Sep 13, 2022
Repository for benchmarking graph neural networks

Benchmarking Graph Neural Networks Updates Nov 2, 2020 Project based on DGL 0.4.2. See the relevant dependencies defined in the environment yml files

NTU Graph Deep Learning Lab 2k Jan 03, 2023
ViViT: Curvature access through the generalized Gauss-Newton's low-rank structure

ViViT is a collection of numerical tricks to efficiently access curvature from the generalized Gauss-Newton (GGN) matrix based on its low-rank structure. Provided functionality includes computing

Felix Dangel 12 Dec 08, 2022