Generative Query Network (GQN) in PyTorch as described in "Neural Scene Representation and Rendering"

Overview

Update 2019/06/24: A model trained on 10% of the Shepard-Metzler dataset has been added, the following notebook explains the main features of this model: nbviewer

Generative Query Network

This is a PyTorch implementation of the Generative Query Network (GQN) described in the DeepMind paper "Neural scene representation and rendering" by Eslami et al. For an introduction to the model and problem described in the paper look at the article by DeepMind.

The current implementation generalises to any of the datasets described in the paper. However, currently, only the Shepard-Metzler dataset has been implemented. To use this dataset you can use the provided script in

sh scripts/data.sh data-dir batch-size

The model can be trained in full by in accordance to the paper by running the file run-gqn.py or by using the provided training script

sh scripts/gpu.sh data-dir

Implementation

The implementation shown in this repository consists of all of the representation architectures described in the paper along with the generative model that is similar to the one described in "Towards conceptual compression" by Gregor et al.

Additionally, this repository also contains implementations of the DRAW model and the ConvolutionalDRAW model both described by Gregor et al.

Comments
  • Training time and testing demo

    Training time and testing demo

    Hi Jesper,

    Thank you for your great code of gqn in real image, I am a little curious about the following issues: How many epochs it use to train a model on real image? How many training data do you use (percentage of full training dataset)? Can you show a testing demo?

    Thank you very much!

    Best wishes, Mingjia Chen

    opened by mjchen611 22
  • ConvLSTM did not concat hidden from last round

    ConvLSTM did not concat hidden from last round

    In the structure presented in the paper, the hidden from last round is concat with input and then proceed for other operation. But it seems your LSTM did not use the hidden information from previous round.

    opened by Tom-the-Cat 7
  • Bad images in training

    Bad images in training

    While playing around with the sm5 dataset, I noticed some of them are badly rendered. individualimage Not sure if this will pose any problem for training, just wanted to point this out.

    opened by versatran01 7
  • Question about generator

    Question about generator

    In the top docstring of generator.py, you mentioned that

    The inference-generator architecture is conceptually
    similar to the encoder-decoder pair seen in variational
    autoencoders.
    

    I don't quite understand this part and I would really appreciate if you could explain a bit or point me at some related aritcles. For the generator I can see how it is similar to a decoder, where it takes latent z, query viewpoint v, and aggregated representation r and eventually output the image x_mu.

    But I'm a bit confused by the inference being the conterpart of encoder.

    opened by versatran01 7
  • Loss Change

    Loss Change

    Dear wohlert,

    May I consult you several questions?

    1. I tried to train this network on Mazes Data from https://github.com/deepmind/gqn-datasets. Actually it just contains 5% data, which is around 110000, instead of the full data. Is it right?

    2. I trained 30000 steps, but the elbo loss only converged to 6800 which has a big difference compared to around 7 in the supplementary. So may I ask what is the approximate value do you achieve on the data you used?

    3. From the visualisation based on Question 2, the reconstruction seems to be reasonable. But the sampling results is quite bad. Do you meet the same problem?

    Many thanks, Bing

    opened by BingCS 5
  • Questions on data preparing

    Questions on data preparing

    Hi, Wohlert:

    After the data conversion with your scripts, I visualize some of the images in the *.pt found pictures like this Figure_1-1

    What's wrong with that Also I'm confused about your batch operation , say if you batch the sequences as you convert them, does it mean that you won't batch them again when use dataloader?

    Thanks

    opened by Kyridiculous2 5
  • Training crashes at the same spot for both Shepard Metzler datasets

    Training crashes at the same spot for both Shepard Metzler datasets

    Some context:

    • I downloaded and converted the datasets via data.sh and set batch size to 12. Note that I am using TensorFlow 1.14 for reading the tfrecord files and converting them.
    • I use gpu.sh to run the training script. I set the batch size to either of [1,12,36,72] and DataParallel to True to use 4 GPUs

    But after a shrot time I get the following errors if I use any batch size higher than 1. This happens on iterations 40, 13 and 6 with batch sizes 12, 36 and 72. This happens for both Shepard Metzler datasets. Why I am getting these errors? Does batch size 1 on the training code mean reading one of the .pt.gz files? If so, setting batch size to 1 in the training script should actually mean 12. Would that be correct?

    Here's what I get for the data set with 5 parts when I set batch size to 36 for instance:

    Epoch [1/200]: [13/1856]   1%|▊                                                                                                                       , elbo=-2.1e+4, kl=827, mu=5e-6, sigma=2 [00:21<52:34]Current run is terminating due to exception: Caught RuntimeError in DataLoader worker process 13.
    Original Traceback (most recent call last):
      File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/worker.py", line 178, in _worker_loop
        data = fetcher.fetch(index)
      File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/fetch.py", line 47, in fetch
        return self.collate_fn(data)
      File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/collate.py", line 79, in default_collate
        return [default_collate(samples) for samples in transposed]
      File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/collate.py", line 79, in <listcomp>
        return [default_collate(samples) for samples in transposed]
      File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/collate.py", line 55, in default_collate
        return torch.stack(batch, 0, out=out)
    RuntimeError: invalid argument 0: Sizes of tensors must match except in dimension 0. Got 12 and 8 in dimension 1 at /pytorch/aten/src/TH/generic/THTensor.cpp:689
    .
    Engine run is terminating due to exception: Caught RuntimeError in DataLoader worker process 13.
    Original Traceback (most recent call last):
      File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/worker.py", line 178, in _worker_loop
        data = fetcher.fetch(index)
      File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/fetch.py", line 47, in fetch
        return self.collate_fn(data)
      File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/collate.py", line 79, in default_collate
        return [default_collate(samples) for samples in transposed]
      File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/collate.py", line 79, in <listcomp>
        return [default_collate(samples) for samples in transposed]
      File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/collate.py", line 55, in default_collate
        return torch.stack(batch, 0, out=out)
    RuntimeError: invalid argument 0: Sizes of tensors must match except in dimension 0. Got 12 and 8 in dimension 1 at /pytorch/aten/src/TH/generic/THTensor.cpp:689
    .
    Traceback (most recent call last):
      File "../run-gqn.py", line 183, in <module>
        trainer.run(train_loader, args.n_epochs)
      File "/usr/local/lib/python3.6/dist-packages/ignite/engine/engine.py", line 850, in run
        return self._internal_run()
      File "/usr/local/lib/python3.6/dist-packages/ignite/engine/engine.py", line 952, in _internal_run
        self._handle_exception(e)
      File "/usr/local/lib/python3.6/dist-packages/ignite/engine/engine.py", line 714, in _handle_exception
        self._fire_event(Events.EXCEPTION_RAISED, e)
      File "/usr/local/lib/python3.6/dist-packages/ignite/engine/engine.py", line 607, in _fire_event
        func(self, *(event_args + args), **kwargs)
      File "../run-gqn.py", line 181, in handle_exception
        else: raise e
      File "/usr/local/lib/python3.6/dist-packages/ignite/engine/engine.py", line 937, in _internal_run
        hours, mins, secs = self._run_once_on_dataset()
      File "/usr/local/lib/python3.6/dist-packages/ignite/engine/engine.py", line 705, in _run_once_on_dataset
        self._handle_exception(e)
      File "/usr/local/lib/python3.6/dist-packages/ignite/engine/engine.py", line 714, in _handle_exception
        self._fire_event(Events.EXCEPTION_RAISED, e)
      File "/usr/local/lib/python3.6/dist-packages/ignite/engine/engine.py", line 607, in _fire_event
        func(self, *(event_args + args), **kwargs)
      File "../run-gqn.py", line 181, in handle_exception
        else: raise e
      File "/usr/local/lib/python3.6/dist-packages/ignite/engine/engine.py", line 655, in _run_once_on_dataset
        batch = next(self._dataloader_iter)
      File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/dataloader.py", line 801, in __next__
        return self._process_data(data)
      File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/dataloader.py", line 846, in _process_data
        data.reraise()
      File "/usr/local/lib/python3.6/dist-packages/torch/_utils.py", line 385, in reraise
        raise self.exc_type(msg)
    RuntimeError: Caught RuntimeError in DataLoader worker process 13.
    Original Traceback (most recent call last):
      File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/worker.py", line 178, in _worker_loop
        data = fetcher.fetch(index)
      File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/fetch.py", line 47, in fetch
        return self.collate_fn(data)
      File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/collate.py", line 79, in default_collate
        return [default_collate(samples) for samples in transposed]
      File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/collate.py", line 79, in <listcomp>
        return [default_collate(samples) for samples in transposed]
      File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/collate.py", line 55, in default_collate
        return torch.stack(batch, 0, out=out)
    RuntimeError: invalid argument 0: Sizes of tensors must match except in dimension 0. Got 12 and 8 in dimension 1 at /pytorch/aten/src/TH/generic/THTensor.cpp:689
    
    opened by Amir-Arsalan 4
  • AttributeError: 'int' object has no attribute 'size'

    AttributeError: 'int' object has no attribute 'size'

    in draw.py, I get this error at the line 118 (batch_size = z.size(0)) Sorry if this is obvious, thanks for help anyway.

    ~ % pip show torch :( Name: torch Version: 1.0.1.post2

    opened by DRM-Free 4
  • Increase dimension of viewpoint and representation

    Increase dimension of viewpoint and representation

    Thanks for this implementation. One question I have is when increasing the dimension of viewpoint and representation, you use torch.repeat. Is there any reason for this? Can one possibly use interpolate?

    In the original paper it says "when concatenating viewpoint v to an image or feature map, its values are ‘broadcast’ in the spatial dimensions to obtain the correct size. "

    The word 'broadcast' is not precisely defined, hence the question.

    opened by versatran01 4
  • Learning rate change

    Learning rate change

    Regarding line 113 of run-gqn.py. Does this change the learning rate of the Adam optimizer? This post shows something different

    https://stackoverflow.com/questions/48324152/pytorch-how-to-change-the-learning-rate-of-an-optimizer-at-any-given-moment-no

    opened by david-bernstein 4
  • Using the rooms data?

    Using the rooms data?

    I wanted to try your code on the rooms data but during conversion, I get these errors. What could I be doing wrong? Note that for the rooms data with moving camera I set the number of camera parameters to 7:

    Traceback (most recent call last):
      File "/usr/lib/python3.6/multiprocessing/pool.py", line 119, in worker
        result = (True, func(*args, **kwds))
      File "/usr/lib/python3.6/multiprocessing/pool.py", line 44, in mapstar
        return list(map(*args))
      File "tfrecord-converter.py", line 66, in convert
        for i, batch in enumerate(batch_process(record)):
      File "tfrecord-converter.py", line 29, in chunk
        for first in iterator:
      File "tfrecord-converter.py", line 40, in process
        'cameras': tf.FixedLenFeature(shape=SEQ_DIM * POSE_DIM, dtype=tf.float32)
      File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/parsing_ops.py", line 1019, in parse_single_example
        serialized, features, example_names, name
      File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/parsing_ops.py", line 1063, in parse_single_example_v2_unoptimized
        return parse_single_example_v2(serialized, features, name)
      File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/parsing_ops.py", line 2089, in parse_single_example_v2
        dense_defaults, dense_shapes, name)
      File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/parsing_ops.py", line 2206, in _parse_single_example_v2_raw
        name=name)
      File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/gen_parsing_ops.py", line 1164, in parse_single_example
        ctx=_ctx)
      File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/gen_parsing_ops.py", line 1260, in parse_single_example_eager_fallback
        attrs=_attrs, ctx=_ctx, name=name)
      File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/execute.py", line 67, in quick_execute
        six.raise_from(core._status_to_exception(e.code, message), None)
      File "<string>", line 3, in raise_from
    tensorflow.python.framework.errors_impl.InvalidArgumentError: Key: frames.  Can't parse serialized Example. [Op:ParseSingleExample]
    """
    
    The above exception was the direct cause of the following exception:
    
    Traceback (most recent call last):
      File "tfrecord-converter.py", line 98, in <module>
        pool.map(f, records)
      File "/usr/lib/python3.6/multiprocessing/pool.py", line 266, in map
        return self._map_async(func, iterable, mapstar, chunksize).get()
      File "/usr/lib/python3.6/multiprocessing/pool.py", line 644, in get
        raise self._value
    tensorflow.python.framework.errors_impl.InvalidArgumentError: Key: frames.  Can't parse serialized Example. [Op:ParseSingleExample]
    
    opened by Amir-Arsalan 3
Releases(0.1)
Owner
Jesper Wohlert
Jesper Wohlert
Time-Optimal Planning for Quadrotor Waypoint Flight

Time-Optimal Planning for Quadrotor Waypoint Flight This is an example implementation of the paper "Time-Optimal Planning for Quadrotor Waypoint Fligh

Robotics and Perception Group 38 Dec 02, 2022
pytorch implementation of "Contrastive Multiview Coding", "Momentum Contrast for Unsupervised Visual Representation Learning", and "Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination"

Unofficial implementation: MoCo: Momentum Contrast for Unsupervised Visual Representation Learning (Paper) InsDis: Unsupervised Feature Learning via N

Zhiqiang Shen 16 Nov 04, 2020
This is a demo app to be used in the video streaming applications

MoViDNN: A Mobile Platform for Evaluating Video Quality Enhancement with Deep Neural Networks MoViDNN is an Android application that can be used to ev

ATHENA Christian Doppler (CD) Laboratory 7 Jul 21, 2022
Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)

Cross-media Structured Common Space for Multimedia Event Extraction Table of Contents Overview Requirements Data Quickstart Citation Overview The code

Manling Li 49 Nov 21, 2022
Pytorch Implementation of PointNet and PointNet++++

Pytorch Implementation of PointNet and PointNet++ This repo is implementation for PointNet and PointNet++ in pytorch. Update 2021/03/27: (1) Release p

Luigi Ariano 1 Nov 11, 2021
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
Pytorch implementation of DeepMind's differentiable neural computer paper.

DNC pytorch This is a Pytorch implementation of DeepMind's Differentiable Neural Computer (DNC) architecture introduced in their recent Nature paper:

Yuanpu Xie 91 Nov 21, 2022
The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting".

IGMTF The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting". Requirements The framework

Wentao Xu 24 Dec 05, 2022
Remote sensing change detection tool based on PaddlePaddle

PdRSCD PdRSCD(PaddlePaddle Remote Sensing Change Detection)是一个基于飞桨PaddlePaddle的遥感变化检测的项目,pypi包名为ppcd。目前0.2版本,最新支持图像列表输入的训练和预测,如多期影像、多源影像甚至多期多源影像。可以快速完

38 Aug 31, 2022
Development kit for MIT Scene Parsing Benchmark

Development Kit for MIT Scene Parsing Benchmark [NEW!] Our PyTorch implementation is released in the following repository: https://github.com/hangzhao

MIT CSAIL Computer Vision 424 Dec 01, 2022
App customer segmentation cohort rfm clustering

CUSTOMER SEGMENTATION COHORT RFM CLUSTERING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU Nên chuyển qua theme màu dark thì sẽ nhìn đẹp hơn https://customer-segmentat

hieulmsc 3 Dec 18, 2021
Physics-informed Neural Operator for Learning Partial Differential Equation

PINO Physics-informed Neural Operator for Learning Partial Differential Equation Abstract: Machine learning methods have recently shown promise in sol

107 Jan 02, 2023
The code for SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network.

SAG-DTA The code is the implementation for the paper 'SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network'. Requirements py

Shugang Zhang 7 Aug 02, 2022
Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data

Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data This is the official PyTorch implementation of the SeCo paper: @articl

ElementAI 101 Dec 12, 2022
labelpix is a graphical image labeling interface for drawing bounding boxes

Welcome to labelpix 👋 labelpix is a graphical image labeling interface for drawing bounding boxes. 🏠 Homepage Install pip install -r requirements.tx

schissmantics 26 May 24, 2022
Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.

Cancer-and-Tumor-Detection-Using-Inception-model In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks

Deepak Nandwani 1 Jan 01, 2022
nanodet_plus,yolov5_v6.0

OAK_Detection OAK设备上适配nanodet_plus,yolov5_v6.0 Environment pytorch = 1.7.0

炼丹去了 1 Feb 18, 2022
Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging"

Deep Optics for Single-shot High-dynamic-range Imaging Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging" CVPR, 2

Stanford Computational Imaging Lab 40 Dec 12, 2022
The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp.

PISE The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp. Requirement conda create -n pise pyt

jinszhang 110 Nov 21, 2022
Official implementation of the ICCV 2021 paper "Conditional DETR for Fast Training Convergence".

The DETR approach applies the transformer encoder and decoder architecture to object detection and achieves promising performance. In this paper, we handle the critical issue, slow training convergen

281 Dec 30, 2022