Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation (RA-L/ICRA 2020)

Overview

Aerial Depth Completion

This work is described in the letter "Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation", by Lucas Teixeira, Martin R. Oswald, Marc Pollefeys, Margarita Chli, published in the IEEE Robotics and Automation Letters (RA-L / ICRA) ETHZ Library link.

Video:

Mesh

Presentation:

Mesh

Citations:

If you use this Code or Aerial Dataset, please cite the following publication:

@article{Teixeira:etal:RAL2020,
    title   = {{Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation}},
    author  = {Lucas Teixeira and Martin R. Oswald and Marc Pollefeys and Margarita Chli},
    journal = {{IEEE} Robotics and Automation Letters ({RA-L})},
    doi     = {10.1109/LRA.2020.2967296},
    year    = {2020}
}

NYUv2, CAB and PVS datasets require further citation from their authors. During our research, we reformat and created ground-truth depth for the CAB and PVS datasets. This code also contains thirt-party networks used for comparison. Please also cite their authors properly in case of use.

Acknowledgment:

The authors thank Fangchang Ma and Abdelrahman Eldesokey for sharing their code that is partially used here. The authors also thanks the owner of the 3D models used to build the dataset. They are identified in each 3D model file.

Data and Simulator

Trained Models

Several trained models are available - here.

Datasets

To be used together by our code, the datasets need to be merged, this means that the content of the train folder of each dataset need to be place in a single train folder. The same happens with the eval folder.

Simulator

The Aerial Dataset was created using this simulator link.

3D Models

Most of the 3D models used to create the dataset can be download here. In the license files contain the authors of the 3D models. Some models were extended with a satellite image from Google Earth.

Running the code

Prerequisites

  • PyTorch 1.0.1
  • Python 3.6
  • Plus dependencies

Testing Example

python3 main.py --evaluate "/media/lucas/lucas-ds2-1tb/tmp/model_best.pth.tar" --data-path "/media/lucas/lucas-ds2-1tb/dataset_big_v12"

Training Example

python3 main.py --data-path "/media/lucas/lucas-ds2-1tb/dataset_big_v12" --workers 8 -lr 0.00001 --batch-size 1 --dcnet-arch gudepthcompnet18 --training-mode dc1_only --criterion l2
python3 main.py --data-path "/media/lucas/lucas-ds2-1tb/dataset_big_v12" --workers 8 --criterion l2 --training-mode dc0-cf1-ln1 --dcnet-arch ged_depthcompnet --dcnet-pretrained /media/lucas/lucas-ds2-1tb/tmp/model_best.pth.tar:dc_weights --confnet-arch cbr3-c1 --confnet-pretrained /media/lucas/lucas-ds2-1tb/tmp/model_best.pth.tar:conf_weights --lossnet-arch ged_depthcompnet --lossnet-pretrained /media/lucas/lucas-ds2-1tb/tmp/model_best.pth.tar:lossdc_weights

Parameters

Parameter Description
--help show this help message and exit
--output NAME output base name in the subfolder results
--training-mode ARCH this variable indicating the training mode. Our framework has up to tree parts the dc (depth completion net), the cf (confidence estimation net) and the ln (loss net). The number 0 or 1 indicates whether the network should be updated during the back-propagation. All the networks can be pre-load using other parameters. training_mode: dc1_only ; dc1-ln0 ; dc1-ln1 ; dc0-cf1-ln0 ; dc1-cf1-ln0 ; dc0-cf1-ln1 ; dc1-cf1-ln1 (default: dc1_only)
--dcnet-arch ARCH model architecture: resnet18 ; udepthcompnet18 ; gms_depthcompnet ; ged_depthcompnet ; gudepthcompnet18 (default: resnet18)
--dcnet-pretrained PATH path to pretraining checkpoint for the dc net (default: empty). Each checkpoint can have multiple network. So it is necessary to define each one. the format is path:network_name. network_name can be: dc_weights, conf_weights, lossdc_weights.
--dcnet-modality MODALITY modality: rgb ; rgbd ; rgbdw (default: rgbd)
--confnet-arch ARCH model architecture: cbr3-c1 ; cbr3-cbr1-c1 ; cbr3-cbr1-c1res ; join ; none (default: cbr3-c1)
--confnet-pretrained PATH path to pretraining checkpoint for the cf net (default: empty). Each checkpoint can have multiple network. So it is necessary to define each one. the format is path:network_name. network_name can be: dc_weights, conf_weights, lossdc_weights.
--lossnet-arch ARCH model architecture: resnet18 ; udepthcompnet18 (uresnet18) ; gms_depthcompnet (nconv-ms) ; ged_depthcompnet (nconv-ed) ; gudepthcompnet18 (nconv-uresnet18) (default: ged_depthcompnet)
--lossnet-pretrained PATH path to pretraining checkpoint for the ln net (default: empty). Each checkpoint can have multiple network. So it is necessary to define each one. the format is path:network_name. network_name can be: dc_weights, conf_weights, lossdc_weights.
--data-type DATA dataset: visim ; kitti (default: visim)
--data-path PATH path to data folder - this folder has to have inside a val folder and a train folder if it is not in evaluation mode.
--data-modality MODALITY this field define the input modality in the format colour-depth-weight. kfd and fd mean random sampling in the ground-truth. kgt means keypoints from slam with depth from ground-truth. kor means keypoints from SLAM with depth from the landmark. The weight can be binary (bin) or from the uncertanty from slam (kw). The parameter can be one of the following: rgb-fd-bin ; rgb-kfd-bin ; rgb-kgt-bin ; rgb-kor-bin ; rgb-kor-kw (default: rgb-fd-bin)
--workers N number of data loading workers (default: 10)
--epochs N number of total epochs to run (default: 15)
--max-gt-depth D cut-off depth of ground truth, negative values means infinity (default: inf [m])
--min-depth D cut-off depth of sparsifier (default: 0 [m])
--max-depth D cut-off depth of sparsifier, negative values means infinity (default: inf [m])
--divider D Normalization factor - zero means per frame (default: 0 [m])
--num-samples N number of sparse depth samples (default: 500)
--sparsifier SPARSIFIER sparsifier: uar ; sim_stereo (default: uar)
--criterion LOSS loss function: l1 ; l2 ; il1 (inverted L1) ; absrel (default: l1)
--optimizer OPTIMIZER Optimizer: sgd ; adam (default: adam)
--batch-size BATCH_SIZE mini-batch size (default: 8)
--learning-rate LR initial learning rate (default 0.001)
--learning-rate-step LRS number of epochs between reduce the learning rate by 10 (default: 5)
--learning-rate-multiplicator LRM multiplicator (default 0.1)
--momentum M momentum (default: 0)
--weight-decay W weight decay (default: 0)
--val-images N number of images in the validation image (default: 10)
--print-freq N print frequency (default: 10)
--resume PATH path to latest checkpoint (default: empty)
--evaluate PATH evaluates the model on validation set, all the training parameters will be ignored, but the input parameters still matters (default: empty)
--precision-recall enables the calculation of precision recall table, might be necessary to ajust the bin and top values in the ConfidencePixelwiseThrAverageMeter class. The result table shows for each confidence threshold the error and the density (default:false)
--confidence-threshold VALUE confidence threshold , the best way to select this number is create the precision-recall table. (default: 0)

Contact

In case of any issue, fell free to contact me via email lteixeira at mavt.ethz.ch.

Owner
ETHZ V4RL
Vision for Robotics Lab, ETH Zurich
ETHZ V4RL
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
The second project in Python course on FCC

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Denise T 1 Dec 13, 2021
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
Information-Theoretic Multi-Objective Bayesian Optimization with Continuous Approximations

Information-Theoretic Multi-Objective Bayesian Optimization with Continuous Approximations Requirements The code is implemented in Python and requires

1 Nov 03, 2021
FastyAPI is a Stack boilerplate optimised for heavy loads.

FastyAPI A FastAPI based Stack boilerplate for heavy loads. Explore the docs » View Demo · Report Bug · Request Feature Table of Contents About The Pr

Ali Chaayb 47 Dec 27, 2022
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis

WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install

Yuchao Zhang 204 Jul 14, 2022
Implementation for Paper "Inverting Generative Adversarial Renderer for Face Reconstruction"

StyleGAR TODO: add arxiv link Implementation of Inverting Generative Adversarial Renderer for Face Reconstruction TODO: for test Currently, some model

155 Oct 27, 2022
Towards Part-Based Understanding of RGB-D Scans

Towards Part-Based Understanding of RGB-D Scans (CVPR 2021) We propose the task of part-based scene understanding of real-world 3D environments: from

26 Nov 23, 2022
Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank

This repository provides the official code for replicating experiments from the paper: Semi-Supervised Semantic Segmentation with Pixel-Level Contrast

Iñigo Alonso Ruiz 58 Dec 15, 2022
基于Pytorch实现优秀的自然图像分割框架!(包括FCN、U-Net和Deeplab)

语义分割学习实验-基于VOC数据集 usage: 下载VOC数据集,将JPEGImages SegmentationClass两个文件夹放入到data文件夹下。 终端切换到目标目录,运行python train.py -h查看训练 (torch) Li Xiang 28 Dec 21, 2022

Implementation of Memory-Efficient Neural Networks with Multi-Level Generation, ICCV 2021

Memory-Efficient Multi-Level In-Situ Generation (MLG) By Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen and David Z. Pan

Jiaqi Gu 2 Jan 04, 2022
Source code related to the article submitted to the International Conference on Computational Science ICCS 2022 in London

POTHER: Patch-Voted Deep Learning-based Chest X-ray Bias Analysis for COVID-19 Detection Source code related to the article submitted to the Internati

Tomasz Szczepański 1 Apr 29, 2022
《Truly shift-invariant convolutional neural networks》(2021)

Truly shift-invariant convolutional neural networks [Paper] Authors: Anadi Chaman and Ivan Dokmanić Convolutional neural networks were always assumed

Anadi Chaman 46 Dec 19, 2022
DIVeR: Deterministic Integration for Volume Rendering

DIVeR: Deterministic Integration for Volume Rendering This repo contains the training and evaluation code for DIVeR. Setup python 3.8 pytorch 1.9.0 py

64 Dec 27, 2022
PyTorch code for the "Deep Neural Networks with Box Convolutions" paper

Box Convolution Layer for ConvNets Single-box-conv network (from `examples/mnist.py`) learns patterns on MNIST What This Is This is a PyTorch implemen

Egor Burkov 515 Dec 18, 2022
Like Dirt-Samples, but cleaned up

Clean-Samples Like Dirt-Samples, but cleaned up, with clear provenance and license info (generally a permissive creative commons licence but check the

TidalCycles 39 Nov 30, 2022
[NeurIPS'20] Self-supervised Co-Training for Video Representation Learning. Tengda Han, Weidi Xie, Andrew Zisserman.

CoCLR: Self-supervised Co-Training for Video Representation Learning This repository contains the implementation of: InfoNCE (MoCo on videos) UberNCE

Tengda Han 271 Jan 02, 2023
Ensembling Off-the-shelf Models for GAN Training

Vision-aided GAN video (3m) | website | paper Can the collective knowledge from a large bank of pretrained vision models be leveraged to improve GAN t

345 Dec 28, 2022
CellRank's reproducibility repository.

CellRank's reproducibility repository We believe that reproducibility is key and have made it as simple as possible to reproduce our results. Please e

Theis Lab 8 Oct 08, 2022
Starter code for the ICCV 2021 paper, 'Detecting Invisible People'

Detecting Invisible People [ICCV 2021 Paper] [Website] Tarasha Khurana, Achal Dave, Deva Ramanan Introduction This repository contains code for Detect

Tarasha Khurana 28 Sep 16, 2022