Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation (RA-L/ICRA 2020)

Overview

Aerial Depth Completion

This work is described in the letter "Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation", by Lucas Teixeira, Martin R. Oswald, Marc Pollefeys, Margarita Chli, published in the IEEE Robotics and Automation Letters (RA-L / ICRA) ETHZ Library link.

Video:

Mesh

Presentation:

Mesh

Citations:

If you use this Code or Aerial Dataset, please cite the following publication:

@article{Teixeira:etal:RAL2020,
    title   = {{Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation}},
    author  = {Lucas Teixeira and Martin R. Oswald and Marc Pollefeys and Margarita Chli},
    journal = {{IEEE} Robotics and Automation Letters ({RA-L})},
    doi     = {10.1109/LRA.2020.2967296},
    year    = {2020}
}

NYUv2, CAB and PVS datasets require further citation from their authors. During our research, we reformat and created ground-truth depth for the CAB and PVS datasets. This code also contains thirt-party networks used for comparison. Please also cite their authors properly in case of use.

Acknowledgment:

The authors thank Fangchang Ma and Abdelrahman Eldesokey for sharing their code that is partially used here. The authors also thanks the owner of the 3D models used to build the dataset. They are identified in each 3D model file.

Data and Simulator

Trained Models

Several trained models are available - here.

Datasets

To be used together by our code, the datasets need to be merged, this means that the content of the train folder of each dataset need to be place in a single train folder. The same happens with the eval folder.

Simulator

The Aerial Dataset was created using this simulator link.

3D Models

Most of the 3D models used to create the dataset can be download here. In the license files contain the authors of the 3D models. Some models were extended with a satellite image from Google Earth.

Running the code

Prerequisites

  • PyTorch 1.0.1
  • Python 3.6
  • Plus dependencies

Testing Example

python3 main.py --evaluate "/media/lucas/lucas-ds2-1tb/tmp/model_best.pth.tar" --data-path "/media/lucas/lucas-ds2-1tb/dataset_big_v12"

Training Example

python3 main.py --data-path "/media/lucas/lucas-ds2-1tb/dataset_big_v12" --workers 8 -lr 0.00001 --batch-size 1 --dcnet-arch gudepthcompnet18 --training-mode dc1_only --criterion l2
python3 main.py --data-path "/media/lucas/lucas-ds2-1tb/dataset_big_v12" --workers 8 --criterion l2 --training-mode dc0-cf1-ln1 --dcnet-arch ged_depthcompnet --dcnet-pretrained /media/lucas/lucas-ds2-1tb/tmp/model_best.pth.tar:dc_weights --confnet-arch cbr3-c1 --confnet-pretrained /media/lucas/lucas-ds2-1tb/tmp/model_best.pth.tar:conf_weights --lossnet-arch ged_depthcompnet --lossnet-pretrained /media/lucas/lucas-ds2-1tb/tmp/model_best.pth.tar:lossdc_weights

Parameters

Parameter Description
--help show this help message and exit
--output NAME output base name in the subfolder results
--training-mode ARCH this variable indicating the training mode. Our framework has up to tree parts the dc (depth completion net), the cf (confidence estimation net) and the ln (loss net). The number 0 or 1 indicates whether the network should be updated during the back-propagation. All the networks can be pre-load using other parameters. training_mode: dc1_only ; dc1-ln0 ; dc1-ln1 ; dc0-cf1-ln0 ; dc1-cf1-ln0 ; dc0-cf1-ln1 ; dc1-cf1-ln1 (default: dc1_only)
--dcnet-arch ARCH model architecture: resnet18 ; udepthcompnet18 ; gms_depthcompnet ; ged_depthcompnet ; gudepthcompnet18 (default: resnet18)
--dcnet-pretrained PATH path to pretraining checkpoint for the dc net (default: empty). Each checkpoint can have multiple network. So it is necessary to define each one. the format is path:network_name. network_name can be: dc_weights, conf_weights, lossdc_weights.
--dcnet-modality MODALITY modality: rgb ; rgbd ; rgbdw (default: rgbd)
--confnet-arch ARCH model architecture: cbr3-c1 ; cbr3-cbr1-c1 ; cbr3-cbr1-c1res ; join ; none (default: cbr3-c1)
--confnet-pretrained PATH path to pretraining checkpoint for the cf net (default: empty). Each checkpoint can have multiple network. So it is necessary to define each one. the format is path:network_name. network_name can be: dc_weights, conf_weights, lossdc_weights.
--lossnet-arch ARCH model architecture: resnet18 ; udepthcompnet18 (uresnet18) ; gms_depthcompnet (nconv-ms) ; ged_depthcompnet (nconv-ed) ; gudepthcompnet18 (nconv-uresnet18) (default: ged_depthcompnet)
--lossnet-pretrained PATH path to pretraining checkpoint for the ln net (default: empty). Each checkpoint can have multiple network. So it is necessary to define each one. the format is path:network_name. network_name can be: dc_weights, conf_weights, lossdc_weights.
--data-type DATA dataset: visim ; kitti (default: visim)
--data-path PATH path to data folder - this folder has to have inside a val folder and a train folder if it is not in evaluation mode.
--data-modality MODALITY this field define the input modality in the format colour-depth-weight. kfd and fd mean random sampling in the ground-truth. kgt means keypoints from slam with depth from ground-truth. kor means keypoints from SLAM with depth from the landmark. The weight can be binary (bin) or from the uncertanty from slam (kw). The parameter can be one of the following: rgb-fd-bin ; rgb-kfd-bin ; rgb-kgt-bin ; rgb-kor-bin ; rgb-kor-kw (default: rgb-fd-bin)
--workers N number of data loading workers (default: 10)
--epochs N number of total epochs to run (default: 15)
--max-gt-depth D cut-off depth of ground truth, negative values means infinity (default: inf [m])
--min-depth D cut-off depth of sparsifier (default: 0 [m])
--max-depth D cut-off depth of sparsifier, negative values means infinity (default: inf [m])
--divider D Normalization factor - zero means per frame (default: 0 [m])
--num-samples N number of sparse depth samples (default: 500)
--sparsifier SPARSIFIER sparsifier: uar ; sim_stereo (default: uar)
--criterion LOSS loss function: l1 ; l2 ; il1 (inverted L1) ; absrel (default: l1)
--optimizer OPTIMIZER Optimizer: sgd ; adam (default: adam)
--batch-size BATCH_SIZE mini-batch size (default: 8)
--learning-rate LR initial learning rate (default 0.001)
--learning-rate-step LRS number of epochs between reduce the learning rate by 10 (default: 5)
--learning-rate-multiplicator LRM multiplicator (default 0.1)
--momentum M momentum (default: 0)
--weight-decay W weight decay (default: 0)
--val-images N number of images in the validation image (default: 10)
--print-freq N print frequency (default: 10)
--resume PATH path to latest checkpoint (default: empty)
--evaluate PATH evaluates the model on validation set, all the training parameters will be ignored, but the input parameters still matters (default: empty)
--precision-recall enables the calculation of precision recall table, might be necessary to ajust the bin and top values in the ConfidencePixelwiseThrAverageMeter class. The result table shows for each confidence threshold the error and the density (default:false)
--confidence-threshold VALUE confidence threshold , the best way to select this number is create the precision-recall table. (default: 0)

Contact

In case of any issue, fell free to contact me via email lteixeira at mavt.ethz.ch.

Owner
ETHZ V4RL
Vision for Robotics Lab, ETH Zurich
ETHZ V4RL
(NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductive few-shot classification"

SSR (NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductivefew-shot classification" [Paper] [Project webpage]

xshen 29 Dec 06, 2022
Complete* list of autonomous driving related datasets

AD Datasets Complete* and curated list of autonomous driving related datasets Contributing Contributions are very welcome! To add or update a dataset:

Daniel Bogdoll 13 Dec 19, 2022
Yolo object detection - Yolo object detection with python

How to run download required files make build_image make download Docker versio

3 Jan 26, 2022
Research code of ICCV 2021 paper "Mesh Graphormer"

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
Python code for loading the Aschaffenburg Pose Dataset.

Aschaffenburg Pose Dataset (APD) This repository contains Python code for loading and filtering the Aschaffenburg Pose Dataset. The dataset itself and

1 Nov 26, 2021
Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Moustafa Meshry 16 Oct 05, 2022
Evaluating AlexNet features at various depths

Linear Separability Evaluation This repo provides the scripts to test a learned AlexNet's feature representation performance at the five different con

Yuki M. Asano 32 Dec 30, 2022
Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Junxian He 57 Jan 01, 2023
pytorch implementation of the ICCV'21 paper "MVTN: Multi-View Transformation Network for 3D Shape Recognition"

MVTN: Multi-View Transformation Network for 3D Shape Recognition (ICCV 2021) By Abdullah Hamdi, Silvio Giancola, Bernard Ghanem Paper | Video | Tutori

Abdullah Hamdi 64 Jan 03, 2023
Code for the paper "Curriculum Dropout", ICCV 2017

Curriculum Dropout Dropout is a very effective way of regularizing neural networks. Stochastically "dropping out" units with a certain probability dis

Pietro Morerio 21 Jan 02, 2022
Codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense neural networks

DominoSearch This is repository for codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense n

11 Sep 10, 2022
Ratatoskr: Worcester Tech's conference scheduling system

Ratatoskr: Worcester Tech's conference scheduling system In Norse mythology, Ratatoskr is a squirrel who runs up and down the world tree Yggdrasil to

4 Dec 22, 2022
A Pytorch implementation of MoveNet from Google. Include training code and pre-train model.

Movenet.Pytorch Intro MoveNet is an ultra fast and accurate model that detects 17 keypoints of a body. This is A Pytorch implementation of MoveNet fro

Mr.Fire 241 Dec 26, 2022
This repository is the code of the paper "Sparse Spatial Transformers for Few-Shot Learning".

🌟 Sparse Spatial Transformers for Few-Shot Learning This code implements the Sparse Spatial Transformers for Few-Shot Learning(SSFormers). Our code i

chx_nju 38 Dec 13, 2022
covid question answering datasets and fine tuned models

Covid-QA Fine tuned models for question answering on Covid-19 data. Hosted Inference This model has been contributed to huggingface.Click here to see

Abhijith Neil Abraham 19 Sep 09, 2021
Awesome Monocular 3D detection

Awesome Monocular 3D detection Paper list of 3D detetction, keep updating! Contents Paper List 2022 2021 2020 2019 2018 2017 2016 KITTI Results Paper

Zhikang Zou 184 Jan 04, 2023
Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The original code is written in keras.

CasRel-pytorch-reimplement Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The o

longlongman 170 Dec 01, 2022
A simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

this is a simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

crispengari 5 Dec 09, 2021
This is the code of NeurIPS'21 paper "Towards Enabling Meta-Learning from Target Models".

ST This is the code of NeurIPS 2021 paper "Towards Enabling Meta-Learning from Target Models". If you use any content of this repo for your work, plea

Su Lu 7 Dec 06, 2022
Learning a mapping from images to psychological similarity spaces with neural networks.

LearningPsychologicalSpaces v0.1: v1.1: v1.2: v1.3: v1.4: v1.5: The code in this repository explores learning a mapping from images to psychological s

Lucas Bechberger 8 Dec 12, 2022