The "breathing k-means" algorithm with datasets and example notebooks

Overview

The Breathing K-Means Algorithm (with examples)

The Breathing K-Means is an approximation algorithm for the k-means problem that (on average) is better (higher solution quality) and faster (lower CPU time usage) than k-means++.

Techreport: https://arxiv.org/abs/2006.15666 (submitted for publication)

Typical results for the "Birch" data set (100000 points drawn from a mixture of 100 circular Gaussians). k=100 Birch1 data set

Can you spot the mistakes? :-)

Installation from pypi

pip install bkmeans

Local installation to run the examples

Clone the repository

git clone https://github.com/gittar/breathing-k-means

Enter the top directory.

cd breathing-k-means

Create the conda environment 'bkm' (or any other name) via

conda env create -n bkm -f environment.yml

Activate the created environment via

conda activate bkm

To run a jupyter notebook with examples, type, e.g.:

jupyter lab notebooks/2D.ipynb

Content

The top level folder contains the following subfolders

  • data/ - data sets used in the notebooks

  • notebooks/ - jupyter notebooks with all examples from the technical report

  • src/

    • bkmeans.py - reference implementation of breathing k-means
  • misc/

    • aux.py - auxiliary functions
    • dataset.py - general class to administer and plot data sets
    • runfunctions.py - wrapper functions used in the notebook

API

The included class BKMeans is subclassed from scikit-learn's KMeans class and has, therefore, the same API. It can be used as a plug-in replacement for scikit-learn's KMeans.

There is one new parameters which can be ignored (left at default) for normal usage:

  • m (breathing depth), default: 5

The parameter m can also be used, however, to generate faster ( 1 < m < 5) or better (m>5) solutions. For details see the technical report.

Example 1: running on simple random data set

Code:

import numpy as np
from bkmeans import BKMeans

# generate random data set
X=np.random.rand(1000,2)

# create BKMeans instance
bkm = BKMeans(n_clusters=100)

# run the algorithm
bkm.fit(X)

# print SSE (inertia in scikit-learn terms)
print(bkm.inertia_)

Output:

1.1775040547902602

Example 2: comparison with k-means++ (multiple runs)

Code:

import numpy as np
from sklearn.cluster import KMeans
from bkmeans import BKMeans

# random 2D data set
X=np.random.rand(1000,2)

# number of centroids
k=100

for i in range(5):
    # kmeans++
    km = KMeans(n_clusters=k)
    km.fit(X)

    # breathing k-means
    bkm = BKMeans(n_clusters=k)
    bkm.fit(X)

    # relative SSE improvement of bkm over km++
    imp = 1 - bkm.inertia_/km.inertia_
    print(f"SSE improvement over k-means++: {imp:.2%}")

Output:

SSE improvement over k-means++: 3.38%
SSE improvement over k-means++: 4.16%
SSE improvement over k-means++: 6.14%
SSE improvement over k-means++: 6.79%
SSE improvement over k-means++: 4.76%

Acknowledgements

Kudos go the scikit-learn team for their excellent sklearn.cluster.KMeans class, also to the developers and maintainers of the other packages used: numpy, scipy, matplotlib, jupyterlab

Owner
Bernd Fritzke
Bernd Fritzke
CTF challenges from redpwnCTF 2021

redpwnCTF 2021 Challenges This repository contains challenges from redpwnCTF 2021 in the rCDS format; challenge information is in the challenge.yaml f

redpwn 27 Dec 07, 2022
Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU

Katsuya Hyodo 8 Oct 03, 2022
Transfer style api - An API to use with Tranfer Style App, where you can use two image and transfer the style

Transfer Style API It's an API to use with Tranfer Style App, where you can use

Brian Alejandro 1 Feb 13, 2022
Efficient Lottery Ticket Finding: Less Data is More

The lottery ticket hypothesis (LTH) reveals the existence of winning tickets (sparse but critical subnetworks) for dense networks, that can be trained in isolation from random initialization to match

VITA 20 Sep 04, 2022
Multi-Template Mouse Brain MRI Atlas (MBMA): both in-vivo and ex-vivo

Multi-template MRI mouse brain atlas (both in vivo and ex vivo) Mouse Brain MRI atlas (both in-vivo and ex-vivo) (repository relocated from the origin

8 Nov 18, 2022
Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger.

Init Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger. 本项目基于 https://github.com/jaywalnut310/vits https://github.com/S

AmorTX 107 Dec 23, 2022
A curated list of awesome game datasets, and tools to artificial intelligence in games

🎮 Awesome Game Datasets In computer science, Artificial Intelligence (AI) is intelligence demonstrated by machines. Its definition, AI research as th

Leonardo Mauro 454 Jan 03, 2023
Implementation of Artificial Neural Network Algorithm

Artificial Neural Network This repository contain implementation of Artificial Neural Network Algorithm in several programming languanges and framewor

Resha Dwika Hefni Al-Fahsi 1 Sep 14, 2022
🥈78th place in Riiid Answer Correctness Prediction competition

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

Jungwoo Park 10 Jul 14, 2022
On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks

On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks We provide the code (in PyTorch) and datasets for our paper "On Size-Orient

Zemin Liu 4 Jun 18, 2022
Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker

Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker A example FastAPI PyTorch Model deploy with nvidia/cuda base docker. Model

Ming 68 Jan 04, 2023
Keyword spotting on Arm Cortex-M Microcontrollers

Keyword spotting for Microcontrollers This repository consists of the tensorflow models and training scripts used in the paper: Hello Edge: Keyword sp

Arm Software 1k Dec 30, 2022
This repository contains various models targetting multimodal representation learning, multimodal fusion for downstream tasks such as multimodal sentiment analysis.

Multimodal Deep Learning 🎆 🎆 🎆 Announcing the multimodal deep learning repository that contains implementation of various deep learning-based model

Deep Cognition and Language Research (DeCLaRe) Lab 398 Dec 30, 2022
Aligning Latent and Image Spaces to Connect the Unconnectable

About This repo contains the official implementation of the Aligning Latent and Image Spaces to Connect the Unconnectable paper. It is a GAN model whi

Ivan Skorokhodov 203 Jan 03, 2023
Python package for missing-data imputation with deep learning

MIDASpy Overview MIDASpy is a Python package for multiply imputing missing data using deep learning methods. The MIDASpy algorithm offers significant

MIDASverse 77 Dec 03, 2022
Official Repo for Ground-aware Monocular 3D Object Detection for Autonomous Driving

Visual 3D Detection Package: This repo aims to provide flexible and reproducible visual 3D detection on KITTI dataset. We expect scripts starting from

Yuxuan Liu 305 Dec 19, 2022
Generalized Decision Transformer for Offline Hindsight Information Matching

Generalized Decision Transformer for Offline Hindsight Information Matching [arxiv] If you use this codebase for your research, please cite the paper:

Hiroki Furuta 35 Dec 12, 2022
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
Official PyTorch implementation of "RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on" (IJCAI-ECAI 2022)

RMGN-VITON RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on In IJCAI-ECAI 2022(short oral). [Paper] [Supplementary Material] Abstra

27 Dec 01, 2022
Taming Transformers for High-Resolution Image Synthesis

Taming Transformers for High-Resolution Image Synthesis CVPR 2021 (Oral) Taming Transformers for High-Resolution Image Synthesis Patrick Esser*, Robin

CompVis Heidelberg 3.5k Jan 03, 2023