Real-Time Seizure Detection using EEG: A Comprehensive Comparison of Recent Approaches under a Realistic Setting

Overview

Real-Time Seizure Detection using Electroencephalogram (EEG)

This is the repository for "Real-Time Seizure Detection using EEG: A Comprehensive Comparison of Recent Approaches under a Realistic Setting".

  • If you have used our code or referred to our result in your research, please cite:
@article{leerealtime2022,
  author = {Lee, Kwanhyung and Jeong, Hyewon and Kim, Seyun and Yang, Donghwa and Kang, Hoon-Chul and Choi, Edward},
  title = {Real-Time Seizure Detection using EEG: A Comprehensive Comparison of Recent Approaches under a Realistic Setting},
  booktitle = {Preprint},
  year = {2022}
}

Concept Figure

We downsample the EEG signal and extract features. The models detect whether ictal / non-ictal signal appears within the 4-second sliding window input. We present an example case with Raw EEG signal but other signal feature extractors can also be applied in the pipeline. concpet

Requirements

To install all the requirements of this repository in your environment, run:

pip install -r requirements.txt

Preprocessing

To construct dataset with TUH EEG dataset, you can download __ and run:

python preproces.py --data_type train --cpu_num *available cpu numbers* --label_type  *tse or tse_bi* --save_directory *path to save preprocessed files* --samplerate *sample rate that you want to re-sample all files*

Model Training

Check our builder/models/detection_models or builder/models/multiclassification repository to see available models for each task. To train the model in default setting, run a command in a format as shown below :

CUDA_VISIBLE_DEVICES=*device number* python ./2_train.py --project-name *folder name to store trained model* --model *name of model to run* --task-type *task*

For sincnet settin, add --sincnet-bandnum 7

Example run for binary seizure detection:

CUDA_VISIBLE_DEVICES=7 python3 ./2_train.py --project-name alexnet_v4_raw --model alexnet_v4 --task-type binary --optim adam --window-size 4 --window-shift 1 --eeg-type bipolar --enc-model raw --binary-sampler-type 6types --binary-target-groups 2 --epoch 8 --batch-size 32 --seizure-wise-eval-for-binary True
CUDA_VISIBLE_DEVICES=7 python3 ./2_train.py --project-name cnn2d_lstm_raw --model cnn2d_lstm_v8 --task-type binary --optim adam --window-size 4 --window-shift 1 --eeg-type bipolar --enc-model raw --binary-sampler-type 6types --binary-target-groups 2 --epoch 8 --batch-size 32 --seizure-wise-eval-for-binary True

Example run for SincNet signal feature extraction :

CUDA_VISIBLE_DEVICES=7 python3 ./2_train.py --project-name alexnet_v4_raw_sincnet --model alexnet_v4 --task-type binary --optim adam --window-size 4 --window-shift 1 --eeg-type bipolar --enc-model sincnet --sincnet-bandnum 7 --binary-sampler-type 6types --binary-target-groups 2 --epoch 8 --batch-size 32 --seizure-wise-eval-for-binary True

Other arguments you can add :

  1. enc-model : preprocessing method to extract features from raw EEG data (options: raw, sincnet, LFCC, stft2, psd2, downsampled) psd2 is for Frequency bands described in our paper stft2 is for short-time fourier transform
  2. seizure-wise-eval-for-binary : perform seizure-wise evaluation for binary task at the end of training if True
  3. ignore-model-summary : does not print model summary and size information if True model summary is measured with torchinfo Please refer to /control/config.py for other arguments and brief explanations.

Model Evaluation

We provide multiple evaluation methods to measure model performance in different perspectives. This command will measure the model's inference time in seconds for one window.

python ./3_test.py --project-name *folder where model is stored* --model *name of model to test* --task-type *task*
python ./4_seiz_test.py --project-name *folder where model is stored* --model *name of model to test* --task-type *task*

Test and measure model speed

To evaluate the model and measure model speed per window using cpu, run the following command :

CUDA_VISIBLE_DEVICES="" python ./3_test.py --project-name *folder where model is stored* --model *name of model to test* --cpu 1 --batch-size 1

For sincnet setting, add --sincnet-bandnum 7 4_seiz_test.py is for evaluation metrics of OVLP, TAES, average latency, and MARGIN

Other arguments you can add :

  1. ignore-model-speed : does not calculate model's inference time per sliding window if True
Owner
AITRICS
AITRICS
git git《Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking》(CVPR 2021) GitHub:git2] 《Masksembles for Uncertainty Estimation》(CVPR 2021) GitHub:git3]

Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li Accepted by CVPR

NingWang 236 Dec 22, 2022
CoSMA: Convolutional Semi-Regular Mesh Autoencoder. From Paper "Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes"

Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes Implementation of CoSMA: Convolutional Semi-Regular Mesh Autoencoder arXiv p

Fraunhofer SCAI 10 Oct 11, 2022
Caffe models in TensorFlow

Caffe to TensorFlow Convert Caffe models to TensorFlow. Usage Run convert.py to convert an existing Caffe model to TensorFlow. Make sure you're using

Saumitro Dasgupta 2.8k Dec 31, 2022
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2020 Links Doc

Sebastian Raschka 4.2k Jan 02, 2023
Unofficial implementation of "TTNet: Real-time temporal and spatial video analysis of table tennis" (CVPR 2020)

TTNet-Pytorch The implementation for the paper "TTNet: Real-time temporal and spatial video analysis of table tennis" An introduction of the project c

Nguyen Mau Dung 438 Dec 29, 2022
This is an official implementation for "Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation".

Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation This repo is the official implementation of Exploiting Temporal Con

Vegetabird 241 Jan 07, 2023
PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021)

PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021) This repo presents PyTorch implementation of M

Evgeny 79 Dec 19, 2022
[ICCV21] Code for RetrievalFuse: Neural 3D Scene Reconstruction with a Database

RetrievalFuse Paper | Project Page | Video RetrievalFuse: Neural 3D Scene Reconstruction with a Database Yawar Siddiqui, Justus Thies, Fangchang Ma, Q

Yawar Nihal Siddiqui 75 Dec 22, 2022
Reimplementation of the paper `Human Attention Maps for Text Classification: Do Humans and Neural Networks Focus on the Same Words? (ACL2020)`

Human Attention for Text Classification Re-implementation of the paper Human Attention Maps for Text Classification: Do Humans and Neural Networks Foc

Shunsuke KITADA 15 Dec 13, 2021
PyTorch implementation of ENet

PyTorch-ENet PyTorch (v1.1.0) implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, ported from the lua-torc

David Silva 333 Dec 29, 2022
VISNOTATE: An Opensource tool for Gaze-based Annotation of WSI Data

VISNOTATE: An Opensource tool for Gaze-based Annotation of WSI Data Introduction Requirements Installation and Setup Supported Hardware and Software R

SigmaLab 1 Jun 14, 2022
git《Investigating Loss Functions for Extreme Super-Resolution》(CVPR 2020) GitHub:

Investigating Loss Functions for Extreme Super-Resolution NTIRE 2020 Perceptual Extreme Super-Resolution Submission. Our method ranked first and secon

Sejong Yang 0 Oct 17, 2022
DexterRedTool - Dexter's Red Team Tool that creates cronjob/task scheduler to consistently creates users

DexterRedTool Author: Dexter Delandro CSEC 473 - Spring 2022 This tool persisten

2 Feb 16, 2022
Meta graph convolutional neural network-assisted resilient swarm communications

Resilient UAV Swarm Communications with Graph Convolutional Neural Network This repository contains the source codes of Resilient UAV Swarm Communicat

62 Dec 06, 2022
This repository contains tutorials for the py4DSTEM Python package

py4DSTEM Tutorials This repository contains tutorials for the py4DSTEM Python package. For more information about py4DSTEM, including installation ins

11 Dec 23, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
SOLO and SOLOv2 for instance segmentation, ECCV 2020 & NeurIPS 2020.

SOLO: Segmenting Objects by Locations This project hosts the code for implementing the SOLO algorithms for instance segmentation. SOLO: Segmenting Obj

Xinlong Wang 1.5k Dec 31, 2022
E-Ink Magic Calendar that automatically syncs to Google Calendar and runs off a battery powered Raspberry Pi Zero

MagInkCal This repo contains the code needed to drive an E-Ink Magic Calendar that uses a battery powered (PiSugar2) Raspberry Pi Zero WH to retrieve

2.8k Dec 28, 2022
Progressive Coordinate Transforms for Monocular 3D Object Detection

Progressive Coordinate Transforms for Monocular 3D Object Detection This repository is the official implementation of PCT. Introduction In this paper,

58 Nov 06, 2022
A pytorch implementation of Paper "Improved Training of Wasserstein GANs"

WGAN-GP An pytorch implementation of Paper "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, SciPy, Matplotlib A recent NVIDIA GPU

Marvin Cao 1.4k Dec 14, 2022