The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"

Overview

Hierarchical Token Semantic Audio Transformer

Introduction

The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection", in ICASSP 2022.

In this paper, we devise a model, HTS-AT, by combining a swin transformer with a token-semantic module and adapt it in to audio classification and sound event detection tasks. HTS-AT is an efficient and light-weight audio transformer with a hierarchical structure and has only 30 million parameters. It achieves new state-of-the-art (SOTA) results on AudioSet and ESC-50, and equals the SOTA on Speech Command V2. It also achieves better performance in event localization than the previous CNN-based models.

HTS-AT Architecture

Classification Results on AudioSet, ESC-50, and Speech Command V2 (mAP)

HTS-AT ClS Result

Localization/Detection Results on DESED dataset (F1-Score)

HTS-AT Localization Result

Getting Started

Install Requirments

pip install -r requirements.txt

Download and Processing Datasets

  • config.py
change the varible "dataset_path" to your audioset address
change the variable "desed_folder" to your DESED address
change the classes_num to 527
./create_index.sh # 
// remember to change the pathes in the script
// more information about this script is in https://github.com/qiuqiangkong/audioset_tagging_cnn

python main.py save_idc 
// count the number of samples in each class and save the npy files
Open the jupyter notebook at esc-50/prep_esc50.ipynb and process it
Open the jupyter notebook at scv2/prep_scv2.ipynb and process it
python conver_desed.py 
// will produce the npy data files

Set the Configuration File: config.py

The script config.py contains all configurations you need to assign to run your code. Please read the introduction comments in the file and change your settings. For the most important part: If you want to train/test your model on AudioSet, you need to set:

dataset_path = "your processed audioset folder"
dataset_type = "audioset"
balanced_data = True
loss_type = "clip_bce"
sample_rate = 32000
hop_size = 320 
classes_num = 527

If you want to train/test your model on ESC-50, you need to set:

dataset_path = "your processed ESC-50 folder"
dataset_type = "esc-50"
loss_type = "clip_ce"
sample_rate = 32000
hop_size = 320 
classes_num = 50

If you want to train/test your model on Speech Command V2, you need to set:

dataset_path = "your processed SCV2 folder"
dataset_type = "scv2"
loss_type = "clip_bce"
sample_rate = 16000
hop_size = 160
classes_num = 35

If you want to test your model on DESED, you need to set:

resume_checkpoint = "Your checkpoint on AudioSet"
heatmap_dir = "localization results output folder"
test_file = "output heatmap name"
fl_local = True
fl_dataset = "Your DESED npy file"

Train and Evaluation

Notice: Our model is run on DDP mode and requires at least two GPU cards. If you want to use a single GPU for training and evaluation, you need to mannually change sed_model.py and main.py

All scripts is run by main.py:

Train: CUDA_VISIBLE_DEVICES=1,2,3,4 python main.py train

Test: CUDA_VISIBLE_DEVICES=1,2,3,4 python main.py test

Ensemble Test: CUDA_VISIBLE_DEVICES=1,2,3,4 python main.py esm_test 
// See config.py for settings of ensemble testing

Weight Average: python main.py weight_average
// See config.py for settings of weight averaging

Localization on DESED

CUDA_VISIBLE_DEVICES=1,2,3,4 python main.py test
// make sure that fl_local=True in config.py
python fl_evaluate.py
// organize and gather the localization results
fl_evaluate_f1.ipynb
// Follow the notebook to produce the results

Model Checkpoints:

We provide the model checkpoints on three datasets (and additionally DESED dataset) in this link. Feel free to download and test it.

Citing

@inproceedings{htsat-ke2022,
  author = {Ke Chen and Xingjian Du and Bilei Zhu and Zejun Ma and Taylor Berg-Kirkpatrick and Shlomo Dubnov},
  title = {HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection},
  booktitle = {{ICASSP} 2022}
}

Our work is based on Swin Transformer, which is a famous image classification transformer model.

Owner
Knut(Ke) Chen
ORZ: { godfather: sweetdum, ufo: zgg, dragon sister: lzl, morning king: corner café }
Knut(Ke) Chen
A toy compiler that can convert Python scripts to pickle bytecode 🥒

Pickora 🐰 A small compiler that can convert Python scripts to pickle bytecode. Requirements Python 3.8+ No third-party modules are required. Usage us

ꌗᖘ꒒ꀤ꓄꒒ꀤꈤꍟ 68 Jan 04, 2023
MoViNets PyTorch implementation: Mobile Video Networks for Efficient Video Recognition;

MoViNet-pytorch Pytorch unofficial implementation of MoViNets: Mobile Video Networks for Efficient Video Recognition. Authors: Dan Kondratyuk, Liangzh

189 Dec 20, 2022
Code and data accompanying our SVRHM'21 paper.

Code and data accompanying our SVRHM'21 paper. Requires tensorflow 1.13, python 3.7, scikit-learn, and pytorch 1.6.0 to be installed. Python scripts i

5 Nov 17, 2021
Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous Event-Based Data"

A Differentiable Recurrent Surface for Asynchronous Event-Based Data Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous

Marco Cannici 21 Oct 05, 2022
Analysis of Antarctica sequencing samples contaminated with SARS-CoV-2

Analysis of SARS-CoV-2 reads in sequencing of 2018-2019 Antarctica samples in PRJNA692319 The samples analyzed here are described in this preprint, wh

Jesse Bloom 4 Feb 09, 2022
A check for whether the dependency jobs are all green.

alls-green A check for whether the dependency jobs are all green. Why? Do you have more than one job in your GitHub Actions CI/CD workflows setup? Do

Re:actors 33 Jan 03, 2023
SMIS - Semantically Multi-modal Image Synthesis(CVPR 2020)

Semantically Multi-modal Image Synthesis Project page / Paper / Demo Semantically Multi-modal Image Synthesis(CVPR2020). Zhen Zhu, Zhiliang Xu, Anshen

316 Dec 01, 2022
Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions

README Repository containing the code for the paper "Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions". Specifically, an

Yousef Emam 13 Nov 24, 2022
Collection of generative models in Pytorch version.

pytorch-generative-model-collections Original : [Tensorflow version] Pytorch implementation of various GANs. This repository was re-implemented with r

Hyeonwoo Kang 2.4k Dec 31, 2022
Python version of the amazing Reaction Mechanism Generator (RMG).

Reaction Mechanism Generator (RMG) Description This repository contains the Python version of Reaction Mechanism Generator (RMG), a tool for automatic

Reaction Mechanism Generator 284 Dec 27, 2022
Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Yu Bai 43 Nov 07, 2022
Code for EMNLP 2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training"

SCAPT-ABSA Code for EMNLP2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training" Overvie

Zhengyan Li 66 Dec 04, 2022
Convert Python 3 code to CUDA code.

Py2CUDA Convert python code to CUDA. Usage To convert a python file say named py_file.py to CUDA, run python generate_cuda.py --file py_file.py --arch

Yuval Rosen 3 Jul 14, 2021
Official PyTorch implementation of RIO

Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection Figure 1: Our proposed Resampling at image-level and obect-

NVIDIA Research Projects 17 May 20, 2022
ByteTrack: Multi-Object Tracking by Associating Every Detection Box

ByteTrack ByteTrack is a simple, fast and strong multi-object tracker. ByteTrack: Multi-Object Tracking by Associating Every Detection Box Yifu Zhang,

Yifu Zhang 2.9k Jan 04, 2023
Pytorch implementation AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks

AttnGAN Pytorch implementation for reproducing AttnGAN results in the paper AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative

Tao Xu 1.2k Dec 26, 2022
Simple reimplemetation experiments about FcaNet

FcaNet-CIFAR An implementation of the paper FcaNet: Frequency Channel Attention Networks on CIFAR10/CIFAR100 dataset. how to run Code: python Cifar.py

76 Feb 04, 2021
Few-shot Learning of GPT-3

Few-shot Learning With Language Models This is a codebase to perform few-shot "in-context" learning using language models similar to the GPT-3 paper.

Tony Z. Zhao 224 Dec 28, 2022
Repository for "Exploring Sparsity in Image Super-Resolution for Efficient Inference", CVPR 2021

SMSR Reposity for "Exploring Sparsity in Image Super-Resolution for Efficient Inference" [arXiv] Highlights Locate and skip redundant computation in S

Longguang Wang 225 Dec 26, 2022
Generative Models for Graph-Based Protein Design

Graph-Based Protein Design This repo contains code for Generative Models for Graph-Based Protein Design by John Ingraham, Vikas Garg, Regina Barzilay

John Ingraham 159 Dec 15, 2022