OpenLT: An open-source project for long-tail classification

Related tags

Deep LearningOpenLT
Overview

OpenLT: An open-source project for long-tail classification

Supported Methods for Long-tailed Recognition:

Reproduce Results

Here we simply show part of results to prove that our implementation is reasonable.

ImageNet-LT

Method Backbone Reported Result Our Implementation
CE ResNet-10 34.8 35.3
Decouple-cRT ResNet-10 41.8 41.8
Decouple-LWS ResNet-10 41.4 41.6
BalanceSoftmax ResNet-10 41.8 41.4
CE ResNet-50 41.6 43.2
LDAM-DRW* ResNet-50 48.8 51.2
Decouple-cRT ResNet-50 47.3 48.7
Decouple-LWS ResNet-50 47.7 49.3

CIFAR100-LT (Imbalance Ratio 100)

${\dagger}$ means the reported results are copied from LADE

Method Datatset Reported Result Our Implementation
CE CIFAR100-LT 39.1 40.3
LDAM-DRW CIFAR100-LT 42.04 42.9
LogitAdjust CIFAR100-LT 43.89 45.3
BalanceSoftmax$^{\dagger}$ CIFAR100-LT 45.1 46.47

Requirement

Packages

  • Python >= 3.7, < 3.9
  • PyTorch >= 1.6
  • tqdm (Used in test.py)
  • tensorboard >= 1.14 (for visualization)
  • pandas
  • numpy

Dataset Preparation

CIFAR code will download data automatically with the dataloader. We use data the same way as classifier-balancing. For ImageNet-LT and iNaturalist, please prepare data in the data directory. ImageNet-LT can be found at this link. iNaturalist data should be the 2018 version from this repo (Note that it requires you to pay to download now). The annotation can be found at here. Please put them in the same location as below:

data
├── cifar-100-python
│   ├── file.txt~
│   ├── meta
│   ├── test
│   └── train
├── cifar-100-python.tar.gz
├── ImageNet_LT
│   ├── ImageNet_LT_open.txt
│   ├── ImageNet_LT_test.txt
│   ├── ImageNet_LT_train.txt
│   ├── ImageNet_LT_val.txt
│   ├── Tiny_ImageNet_LT_train.txt (Optional)
│   ├── Tiny_ImageNet_LT_val.txt (Optional)
│   ├── Tiny_ImageNet_LT_test.txt (Optional)
│   ├── test
│   ├── train
│   └── val
└── iNaturalist18
    ├── iNaturalist18_train.txt
    ├── iNaturalist18_val.txt
    └── train_val2018

Training and Evaluation Instructions

Single Stage Training

python train.py -c path_to_config_file

For example, to train a model with LDAM Loss on CIFAR-100-LT:

python train.py -c configs/CIFAR-100/LDAMLoss.json

Decouple Training (Stage-2)

python train.py -c path_to_config_file -crt path_to_stage_one_checkpoints

For example, to train a model with LWS classifier on ImageNet-LT:

python train.py -c configs/ImageNet-LT/R50_LWS.json -lws path_to_stage_one_checkpoints

Test

To test a checkpoint, please put it with the corresponding config file.

python test.py -r path_to_checkpoint

resume

python train.py -c path_to_config_file -r path_to_resume_checkpoint

Please see the pytorch template that we use for additional more general usages of this project

FP16 Training

If you set fp16 in utils/util.py, it will enable fp16 training. However, this is susceptible to change (and may not work on all settings or models) and please double check if you are using it since we don't plan to focus on this part if you request help. Only some models work (see autograd in the code). We do not plan to provide support on this because it is not within our focus (just for faster training and less memory requirement). In our experiments, the use of FP16 training does not reduce the accuracy of the model, regardless of whether it is a small dataset (CIFAR-LT) or a large dataset(ImageNet_LT, iNaturalist).

Visualization

We use tensorboard as a visualization tool, and provide the accuracy changes of each class and different groups during the training process:

tensorboard --logdir path_to_dir

We also provide the simple code to visualize feature distribution using t-SNE and calibration using the reliability diagrams, please check the parameters in plot_tsne.py and plot_ece.py, and then run:

python plot_tsne.py

or

python plot_ece.py

Pytorch template

This is a project based on this pytorch template. The readme of the template explains its functionality, although we try to list most frequently used ones in this readme.

License

This project is licensed under the MIT License. See LICENSE for more details. The parts described below follow their original license.

Acknowledgements

This project is mainly based on RIDE's code base. In the process of reproducing and organizing the code, it also refers to some other excellent code repositories, such as decouple and LDAM.

Owner
Ming Li
Ming Li
GNPy: Optical Route Planning and DWDM Network Optimization

GNPy is an open-source, community-developed library for building route planning and optimization tools in real-world mesh optical networks

Telecom Infra Project 140 Dec 19, 2022
Loopy belief propagation for factor graphs on discrete variables, in JAX!

PGMax implements general factor graphs for discrete probabilistic graphical models (PGMs), and hardware-accelerated differentiable loopy belief propagation (LBP) in JAX.

Vicarious 62 Dec 23, 2022
Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes

Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized C

Sam Bond-Taylor 139 Jan 04, 2023
img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation

img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation Figure 1: We estimate the 6DoF rigid transformation of a 3D face (rendered in si

Vítor Albiero 519 Dec 29, 2022
Codecov coverage standard for Python

Python-Standard Last Updated: 01/07/22 00:09:25 What is this? This is a Python application, with basic unit tests, for which coverage is uploaded to C

Codecov 10 Nov 04, 2022
Implementation of UNET architecture for Image Segmentation.

Semantic Segmentation using UNET This is the implementation of UNET on Carvana Image Masking Kaggle Challenge About the Dataset This dataset contains

Anushka agarwal 4 Dec 21, 2021
Software & Hardware to do multi color printing with Sharpies

3D Print Colorizer is a combination of 3D printed parts and a Cura plugin which allows anyone with an Ender 3 like 3D printer to produce multi colored

343 Jan 06, 2023
Groceries ARL: Association Rules (Birliktelik Kuralı)

Groceries_ARL Association Rules (Birliktelik Kuralı) Birliktelik kuralları, mark

Şebnem 5 Feb 08, 2022
The fundamental package for scientific computing with Python.

NumPy is the fundamental package needed for scientific computing with Python. Website: https://www.numpy.org Documentation: https://numpy.org/doc Mail

NumPy 22.4k Jan 09, 2023
Deep Q-learning for playing chrome dino game

[PYTORCH] Deep Q-learning for playing Chrome Dino

Viet Nguyen 68 Dec 05, 2022
MiraiML: asynchronous, autonomous and continuous Machine Learning in Python

MiraiML Mirai: future in japanese. MiraiML is an asynchronous engine for continuous & autonomous machine learning, built for real-time usage. Usage In

Arthur Paulino 25 Jul 27, 2022
Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Scan-Dataset

Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Sc

2 Dec 26, 2021
Learning Tracking Representations via Dual-Branch Fully Transformer Networks

Learning Tracking Representations via Dual-Branch Fully Transformer Networks DualTFR ⭐ We achieves the runner-ups for both VOT2021ST (short-term) and

phiphi 19 May 04, 2022
A Python parser that takes the content of a text file and then reads it into variables.

Text-File-Parser A Python parser that takes the content of a text file and then reads into variables. Input.text File 1. What is your ***? 1. 18 -

Kelvin 0 Jul 26, 2021
PyTorch implementation for Score-Based Generative Modeling through Stochastic Differential Equations (ICLR 2021, Oral)

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains a PyTorch implementation for the paper Score-Based Genera

Yang Song 757 Jan 04, 2023
FedML: A Research Library and Benchmark for Federated Machine Learning

FedML: A Research Library and Benchmark for Federated Machine Learning 📄 https://arxiv.org/abs/2007.13518 News 2021-02-01 (Award): #NeurIPS 2020# Fed

FedML-AI 2.3k Jan 08, 2023
Decorator for PyMC3

sampled Decorator for reusable models in PyMC3 Provides syntactic sugar for reusable models with PyMC3. This lets you separate creating a generative m

Colin 50 Oct 08, 2021
Official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

BALLAD This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model. Requirements Python3 Pytorch(1.7.

peng gao 42 Nov 26, 2022
Epidemiology analysis package

zEpid zEpid is an epidemiology analysis package, providing easy to use tools for epidemiologists coding in Python 3.5+. The purpose of this library is

Paul Zivich 111 Jan 08, 2023
Code accompanying "Dynamic Neural Relational Inference" from CVPR 2020

Code accompanying "Dynamic Neural Relational Inference" This codebase accompanies the paper "Dynamic Neural Relational Inference" from CVPR 2020. This

Colin Graber 48 Dec 23, 2022