OpenLT: An open-source project for long-tail classification

Related tags

Deep LearningOpenLT
Overview

OpenLT: An open-source project for long-tail classification

Supported Methods for Long-tailed Recognition:

Reproduce Results

Here we simply show part of results to prove that our implementation is reasonable.

ImageNet-LT

Method Backbone Reported Result Our Implementation
CE ResNet-10 34.8 35.3
Decouple-cRT ResNet-10 41.8 41.8
Decouple-LWS ResNet-10 41.4 41.6
BalanceSoftmax ResNet-10 41.8 41.4
CE ResNet-50 41.6 43.2
LDAM-DRW* ResNet-50 48.8 51.2
Decouple-cRT ResNet-50 47.3 48.7
Decouple-LWS ResNet-50 47.7 49.3

CIFAR100-LT (Imbalance Ratio 100)

${\dagger}$ means the reported results are copied from LADE

Method Datatset Reported Result Our Implementation
CE CIFAR100-LT 39.1 40.3
LDAM-DRW CIFAR100-LT 42.04 42.9
LogitAdjust CIFAR100-LT 43.89 45.3
BalanceSoftmax$^{\dagger}$ CIFAR100-LT 45.1 46.47

Requirement

Packages

  • Python >= 3.7, < 3.9
  • PyTorch >= 1.6
  • tqdm (Used in test.py)
  • tensorboard >= 1.14 (for visualization)
  • pandas
  • numpy

Dataset Preparation

CIFAR code will download data automatically with the dataloader. We use data the same way as classifier-balancing. For ImageNet-LT and iNaturalist, please prepare data in the data directory. ImageNet-LT can be found at this link. iNaturalist data should be the 2018 version from this repo (Note that it requires you to pay to download now). The annotation can be found at here. Please put them in the same location as below:

data
├── cifar-100-python
│   ├── file.txt~
│   ├── meta
│   ├── test
│   └── train
├── cifar-100-python.tar.gz
├── ImageNet_LT
│   ├── ImageNet_LT_open.txt
│   ├── ImageNet_LT_test.txt
│   ├── ImageNet_LT_train.txt
│   ├── ImageNet_LT_val.txt
│   ├── Tiny_ImageNet_LT_train.txt (Optional)
│   ├── Tiny_ImageNet_LT_val.txt (Optional)
│   ├── Tiny_ImageNet_LT_test.txt (Optional)
│   ├── test
│   ├── train
│   └── val
└── iNaturalist18
    ├── iNaturalist18_train.txt
    ├── iNaturalist18_val.txt
    └── train_val2018

Training and Evaluation Instructions

Single Stage Training

python train.py -c path_to_config_file

For example, to train a model with LDAM Loss on CIFAR-100-LT:

python train.py -c configs/CIFAR-100/LDAMLoss.json

Decouple Training (Stage-2)

python train.py -c path_to_config_file -crt path_to_stage_one_checkpoints

For example, to train a model with LWS classifier on ImageNet-LT:

python train.py -c configs/ImageNet-LT/R50_LWS.json -lws path_to_stage_one_checkpoints

Test

To test a checkpoint, please put it with the corresponding config file.

python test.py -r path_to_checkpoint

resume

python train.py -c path_to_config_file -r path_to_resume_checkpoint

Please see the pytorch template that we use for additional more general usages of this project

FP16 Training

If you set fp16 in utils/util.py, it will enable fp16 training. However, this is susceptible to change (and may not work on all settings or models) and please double check if you are using it since we don't plan to focus on this part if you request help. Only some models work (see autograd in the code). We do not plan to provide support on this because it is not within our focus (just for faster training and less memory requirement). In our experiments, the use of FP16 training does not reduce the accuracy of the model, regardless of whether it is a small dataset (CIFAR-LT) or a large dataset(ImageNet_LT, iNaturalist).

Visualization

We use tensorboard as a visualization tool, and provide the accuracy changes of each class and different groups during the training process:

tensorboard --logdir path_to_dir

We also provide the simple code to visualize feature distribution using t-SNE and calibration using the reliability diagrams, please check the parameters in plot_tsne.py and plot_ece.py, and then run:

python plot_tsne.py

or

python plot_ece.py

Pytorch template

This is a project based on this pytorch template. The readme of the template explains its functionality, although we try to list most frequently used ones in this readme.

License

This project is licensed under the MIT License. See LICENSE for more details. The parts described below follow their original license.

Acknowledgements

This project is mainly based on RIDE's code base. In the process of reproducing and organizing the code, it also refers to some other excellent code repositories, such as decouple and LDAM.

Owner
Ming Li
Ming Li
Testbed of AI Systems Quality Management

qunomon Description A testbed for testing and managing AI system qualities. Demo Sorry. Not deployment public server at alpha version. Requirement Ins

AIST AIRC 15 Nov 27, 2021
Basics of 2D and 3D Human Pose Estimation.

Human Pose Estimation 101 If you want a slightly more rigorous tutorial and understand the basics of Human Pose Estimation and how the field has evolv

Sudharshan Chandra Babu 293 Dec 14, 2022
Pytorch version of SfmLearner from Tinghui Zhou et al.

SfMLearner Pytorch version This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghu

Clément Pinard 909 Dec 22, 2022
The project covers common metrics for super-resolution performance evaluation.

Super-Resolution Performance Evaluation Code The project covers common metrics for super-resolution performance evaluation. Metrics support The script

xmy 10 Aug 03, 2022
OpenCVのGrabCut()を利用したセマンティックセグメンテーション向けアノテーションツール(Annotation tool using GrabCut() of OpenCV. It can be used to create datasets for semantic segmentation.)

[Japanese/English] GrabCut-Annotation-Tool GrabCut-Annotation-Tool.mp4 OpenCVのGrabCut()を利用したアノテーションツールです。 セマンティックセグメンテーション向けのデータセット作成にご使用いただけます。 ※Grab

KazuhitoTakahashi 30 Nov 18, 2022
Continual Learning of Electronic Health Records (EHR).

Continual Learning of Longitudinal Health Records Repo for reproducing the experiments in Continual Learning of Longitudinal Health Records (2021). Re

Jacob 7 Oct 21, 2022
TSIT: A Simple and Versatile Framework for Image-to-Image Translation

TSIT: A Simple and Versatile Framework for Image-to-Image Translation This repository provides the official PyTorch implementation for the following p

Liming Jiang 255 Nov 23, 2022
patchmatch和patchmatchstereo算法的python实现

patchmatch patchmatch以及patchmatchstereo算法的python版实现 patchmatch参考 github patchmatchstereo参考李迎松博士的c++版代码 由于patchmatchstereo没有做任何优化,并且是python的代码,主要是方便解析算

Sanders Bao 11 Dec 02, 2022
[Link]mareteutral - pars tradg wth M []

pairs-trading-with-ML Jonathan Larkin, August 2017 One popular strategy classification is Pairs Trading. Though this category of strategies can exhibi

Jonathan Larkin 134 Jan 06, 2023
Keras attention models including botnet,CoaT,CoAtNet,CMT,cotnet,halonet,resnest,resnext,resnetd,volo,mlp-mixer,resmlp,gmlp,levit

Keras_cv_attention_models Keras_cv_attention_models Usage Basic Usage Layers Model surgery AotNet ResNetD ResNeXt ResNetQ BotNet VOLO ResNeSt HaloNet

319 Dec 28, 2022
The source code of "SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation", accepted to WACV 2022.

SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation The source code of our work "SIDE: Center-based Stereo 3D Detecto

10 Dec 18, 2022
Rethinking of Pedestrian Attribute Recognition: A Reliable Evaluation under Zero-Shot Pedestrian Identity Setting

Pytorch Pedestrian Attribute Recognition: A strong PyTorch baseline of pedestrian attribute recognition and multi-label classification.

Jian 79 Dec 18, 2022
Cross-Modal Contrastive Learning for Text-to-Image Generation

Cross-Modal Contrastive Learning for Text-to-Image Generation This repository hosts the open source JAX implementation of XMC-GAN. Setup instructions

Google Research 94 Nov 12, 2022
ACV is a python library that provides explanations for any machine learning model or data.

ACV is a python library that provides explanations for any machine learning model or data. It gives local rule-based explanations for any model or data and different Shapley Values for tree-based mod

Salim Amoukou 85 Dec 27, 2022
An original implementation of "MetaICL Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi

MetaICL: Learning to Learn In Context This includes an original implementation of "MetaICL: Learning to Learn In Context" by Sewon Min, Mike Lewis, Lu

Meta Research 141 Jan 07, 2023
A web application that provides real time temperature and humidity readings of a house.

About A web application which provides real time temperature and humidity readings of a house. If you're interested in the data collected so far click

Ben Thompson 3 Jan 28, 2022
A project studying the influence of communication in multi-objective normal-form games

Communication in Multi-Objective Normal-Form Games This repo consists of five different types of agents that we have used in our study of communicatio

Willem Röpke 0 Dec 17, 2021
Weighted QMIX: Expanding Monotonic Value Function Factorisation

This repo contains the cleaned-up code that was used in "Weighted QMIX: Expanding Monotonic Value Function Factorisation"

whirl 82 Dec 29, 2022
PyAF is an Open Source Python library for Automatic Time Series Forecasting built on top of popular pydata modules.

PyAF (Python Automatic Forecasting) PyAF is an Open Source Python library for Automatic Forecasting built on top of popular data science python module

CARME Antoine 405 Jan 02, 2023
Code for layerwise detection of linguistic anomaly paper (ACL 2021)

Layerwise Anomaly This repository contains the source code and data for our ACL 2021 paper: "How is BERT surprised? Layerwise detection of linguistic

6 Dec 07, 2022