Torch code for our CVPR 2018 paper "Residual Dense Network for Image Super-Resolution" (Spotlight)

Overview

Residual Dense Network for Image Super-Resolution

This repository is for RDN introduced in the following paper

Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun Fu, "Residual Dense Network for Image Super-Resolution", CVPR 2018 (spotlight), [arXiv] [[email protected]], [[email protected]]

Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun Fu, "Residual Dense Network for Image Restoration", arXiv 2018, [arXiv]

The code is built on EDSR (Torch) and tested on Ubuntu 14.04 environment (Torch7, CUDA8.0, cuDNN5.1) with Titan X/1080Ti/Xp GPUs.

Other implementations: PyTorch_version has been implemented by Nguyễn Trần Toàn ([email protected]) and merged into EDSR_PyTorch. TensorFlow_version by hengchuan.

Contents

  1. Introduction
  2. Train
  3. Test
  4. Results
  5. Citation
  6. Acknowledgements

Introduction

A very deep convolutional neural network (CNN) has recently achieved great success for image super-resolution (SR) and offered hierarchical features as well. However, most deep CNN based SR models do not make full use of the hierarchical features from the original low-resolution (LR) images, thereby achieving relatively-low performance. In this paper, we propose a novel residual dense network (RDN) to address this problem in image SR. We fully exploit the hierarchical features from all the convolutional layers. Specifically, we propose residual dense block (RDB) to extract abundant local features via dense connected convolutional layers. RDB further allows direct connections from the state of preceding RDB to all the layers of current RDB, leading to a contiguous memory (CM) mechanism. Local feature fusion in RDB is then used to adaptively learn more effective features from preceding and current local features and stabilizes the training of wider network. After fully obtaining dense local features, we use global feature fusion to jointly and adaptively learn global hierarchical features in a holistic way. Experiments on benchmark datasets with different degradation models show that our RDN achieves favorable performance against state-of-the-art methods.

RDB Figure 1. Residual dense block (RDB) architecture. RDN Figure 2. The architecture of our proposed residual dense network (RDN).

Train

Prepare training data

  1. Download DIV2K training data (800 training + 100 validtion images) from DIV2K dataset or SNU_CVLab.

  2. Place all the HR images in 'Prepare_TrainData/DIV2K/DIV2K_HR'.

  3. Run 'Prepare_TrainData_HR_LR_BI/BD/DN.m' in matlab to generate LR images for BI, BD, and DN models respectively.

  4. Run 'th png_to_t7.lua' to convert each .png image to .t7 file in new folder 'DIV2K_decoded'.

  5. Specify the path of 'DIV2K_decoded' to '-datadir' in 'RDN_TrainCode/code/opts.lua'.

For more informaiton, please refer to EDSR(Torch).

Begin to train

  1. (optional) Download models for our paper and place them in '/RDN_TrainCode/experiment/model'.

    All the models can be downloaded from Dropbox or Baidu.

  2. Cd to 'RDN_TrainCode/code', run the following scripts to train models.

    You can use scripts in file 'TrainRDN_scripts' to train models for our paper.

    # BI, scale 2, 3, 4
    # BIX2F64D18C6G64P48, input=48x48, output=96x96
    th main.lua -scale 2 -netType RDN -nFeat 64 -nFeaSDB 64 -nDenseBlock 16 -nDenseConv 8 -growthRate 64 -patchSize 96 -dataset div2k -datatype t7  -DownKernel BI -splitBatch 4 -trainOnly true
    
    # BIX3F64D18C6G64P32, input=32x32, output=96x96, fine-tune on RDN_BIX2.t7
    th main.lua -scale 3 -netType resnet_cu -nFeat 64 -nFeaSDB 64 -nDenseBlock 16 -nDenseConv 8 -growthRate 64 -patchSize 96 -dataset div2k -datatype t7  -DownKernel BI -splitBatch 4 -trainOnly true  -preTrained ../experiment/model/RDN_BIX2.t7
    
    # BIX4F64D18C6G64P32, input=32x32, output=128x128, fine-tune on RDN_BIX2.t7
    th main.lua -scale 4 -nGPU 1 -netType resnet_cu -nFeat 64 -nFeaSDB 64 -nDenseBlock 16 -nDenseConv 8 -growthRate 64 -patchSize 128 -dataset div2k -datatype t7  -DownKernel BI -splitBatch 4 -trainOnly true -nEpochs 1000 -preTrained ../experiment/model/RDN_BIX2.t7 
    
    # BD, scale 3
    # BDX3F64D18C6G64P32, input=32x32, output=96x96, fine-tune on RDN_BIX3.t7
    th main.lua -scale 3 -nGPU 1 -netType resnet_cu -nFeat 64 -nFeaSDB 64 -nDenseBlock 16 -nDenseConv 8 -growthRate 64 -patchSize 96 -dataset div2k -datatype t7  -DownKernel BD -splitBatch 4 -trainOnly true -nEpochs 200 -preTrained ../experiment/model/RDN_BIX3.t7
    
    # DN, scale 3
    # DNX3F64D18C6G64P32, input=32x32, output=96x96, fine-tune on RDN_BIX3.t7
    th main.lua -scale 3 -nGPU 1 -netType resnet_cu -nFeat 64 -nFeaSDB 64 -nDenseBlock 16 -nDenseConv 8 -growthRate 64 -patchSize 96 -dataset div2k -datatype t7  -DownKernel DN -splitBatch 4 -trainOnly true  -nEpochs 200 -preTrained ../experiment/model/RDN_BIX3.t7

    Only RDN_BIX2.t7 was trained using 48x48 input patches. All other models were trained using 32x32 input patches in order to save training time. However, smaller input patch size in training would lower the performance to some degree. We also set '-trainOnly true' to save GPU memory.

Test

Quick start

  1. Download models for our paper and place them in '/RDN_TestCode/model'.

    All the models can be downloaded from Dropbox or Baidu.

  2. Run 'TestRDN.lua'

    You can use scripts in file 'TestRDN_scripts' to produce results for our paper.

    # No self-ensemble: RDN
    # BI degradation model, X2, X3, X4
    th TestRDN.lua -model RDN_BIX2 -degradation BI -scale 2 -selfEnsemble false -dataset Set5
    th TestRDN.lua -model RDN_BIX3 -degradation BI -scale 3 -selfEnsemble false -dataset Set5
    th TestRDN.lua -model RDN_BIX4 -degradation BI -scale 4 -selfEnsemble false -dataset Set5
    # BD degradation model, X3
    th TestRDN.lua -model RDN_BDX3 -degradation BD -scale 3 -selfEnsemble false -dataset Set5
    # DN degradation model, X3
    th TestRDN.lua -model RDN_DNX3 -degradation DN -scale 3 -selfEnsemble false -dataset Set5
    
    
    # With self-ensemble: RDN+
    # BI degradation model, X2, X3, X4
    th TestRDN.lua -model RDN_BIX2 -degradation BI -scale 2 -selfEnsemble true -dataset Set5
    th TestRDN.lua -model RDN_BIX3 -degradation BI -scale 3 -selfEnsemble true -dataset Set5
    th TestRDN.lua -model RDN_BIX4 -degradation BI -scale 4 -selfEnsemble true -dataset Set5
    # BD degradation model, X3
    th TestRDN.lua -model RDN_BDX3 -degradation BD -scale 3 -selfEnsemble true -dataset Set5
    # DN degradation model, X3
    th TestRDN.lua -model RDN_DNX3 -degradation DN -scale 3 -selfEnsemble true -dataset Set5

The whole test pipeline

  1. Prepare test data.

    Place the original test sets (e.g., Set5, other test sets are available from GoogleDrive or Baidu) in 'OriginalTestData'.

    Run 'Prepare_TestData_HR_LR.m' in Matlab to generate HR/LR images with different degradation models.

  2. Conduct image SR.

    See Quick start

  3. Evaluate the results.

    Run 'Evaluate_PSNR_SSIM.m' to obtain PSNR/SSIM values for paper.

Results

PSNR_SSIM_BI Table 1. Benchmark results with BI degradation model. Average PSNR/SSIM values for scaling factor ×2, ×3, and ×4.

PSNR_SSIM_BD_DN Table 2. Benchmark results with BD and DN degradation models. Average PSNR/SSIM values for scaling factor ×3.

Citation

If you find the code helpful in your resarch or work, please cite the following papers.

@InProceedings{Lim_2017_CVPR_Workshops,
  author = {Lim, Bee and Son, Sanghyun and Kim, Heewon and Nah, Seungjun and Lee, Kyoung Mu},
  title = {Enhanced Deep Residual Networks for Single Image Super-Resolution},
  booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
  month = {July},
  year = {2017}
}

@inproceedings{zhang2018residual,
    title={Residual Dense Network for Image Super-Resolution},
    author={Zhang, Yulun and Tian, Yapeng and Kong, Yu and Zhong, Bineng and Fu, Yun},
    booktitle={CVPR},
    year={2018}
}

@article{zhang2020rdnir,
    title={Residual Dense Network for Image Restoration},
    author={Zhang, Yulun and Tian, Yapeng and Kong, Yu and Zhong, Bineng and Fu, Yun},
    journal={TPAMI},
    year={2020}
}

Acknowledgements

This code is built on EDSR (Torch). We thank the authors for sharing their codes of EDSR Torch version and PyTorch version.

Owner
Yulun Zhang
Yulun Zhang
List of content farm sites like g.penzai.com.

内容农场网站清单 Google 中文搜索结果包含了相当一部分的内容农场式条目,比如「小 X 知识网」「小 X 百科网」。此种链接常会 302 重定向其主站,页面内容为自动生成,大量堆叠关键字,揉杂一些爬取到的内容,完全不具可读性和参考价值。 尤为过分的是,该类网站可能有成千上万个分身域名被 Goog

WDMPA 541 Jan 03, 2023
The repo contains the code of the ACL2020 paper `Dice Loss for Data-imbalanced NLP Tasks`

Dice Loss for NLP Tasks This repository contains code for Dice Loss for Data-imbalanced NLP Tasks at ACL2020. Setup Install Package Dependencies The c

223 Dec 17, 2022
A Python library for common tasks on 3D point clouds

Point Cloud Utils (pcu) - A Python library for common tasks on 3D point clouds Point Cloud Utils (pcu) is a utility library providing the following fu

Francis Williams 622 Dec 27, 2022
ULMFiT for Genomic Sequence Data

Genomic ULMFiT This is an implementation of ULMFiT for genomics classification using Pytorch and Fastai. The model architecture used is based on the A

Karl 276 Dec 12, 2022
NHL 94 AI contests

nhl94-ai The end goals of this project is to: Train Models that play NHL 94 Support AI vs AI contests in NHL 94 Provide an improved AI opponent for NH

Mathieu Poliquin 2 Dec 06, 2021
Cross-Modal Contrastive Learning for Text-to-Image Generation

Cross-Modal Contrastive Learning for Text-to-Image Generation This repository hosts the open source JAX implementation of XMC-GAN. Setup instructions

Google Research 94 Nov 12, 2022
Source code for CVPR 2021 paper "Riggable 3D Face Reconstruction via In-Network Optimization"

Riggable 3D Face Reconstruction via In-Network Optimization Source code for CVPR 2021 paper "Riggable 3D Face Reconstruction via In-Network Optimizati

130 Jan 02, 2023
Modified fork of Xuebin Qin's U-2-Net Repository. Used for demonstration purposes.

U^2-Net (U square net) Modified version of U2Net used for demonstation purposes. Paper: U^2-Net: Going Deeper with Nested U-Structure for Salient Obje

Shreyas Bhat Kera 13 Aug 28, 2022
Y. Zhang, Q. Yao, W. Dai, L. Chen. AutoSF: Searching Scoring Functions for Knowledge Graph Embedding. IEEE International Conference on Data Engineering (ICDE). 2020

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
BARF: Bundle-Adjusting Neural Radiance Fields 🤮 (ICCV 2021 oral)

BARF 🤮 : Bundle-Adjusting Neural Radiance Fields Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Simon Lucey IEEE International Conference on Comp

Chen-Hsuan Lin 539 Dec 28, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Dec 30, 2022
A pytorch &keras implementation and demo of Fastformer.

Fastformer Notes from the authors Pytorch/Keras implementation of Fastformer. The keras version only includes the core fastformer attention part. The

153 Dec 28, 2022
Here I will explain the flow to deploy your custom deep learning models on Ultra96V2.

Xilinx_Vitis_AI This repo will help you to Deploy your Deep Learning Model on Ultra96v2 Board. Prerequisites Vitis Core Development Kit 2019.2 This co

Amin Mamandipoor 1 Feb 08, 2022
the official implementation of the paper "Isometric Multi-Shape Matching" (CVPR 2021)

Isometric Multi-Shape Matching (IsoMuSh) Paper-CVF | Paper-arXiv | Video | Code Citation If you find our work useful in your research, please consider

Maolin Gao 9 Jul 17, 2022
A PyTorch implementation of "Signed Graph Convolutional Network" (ICDM 2018).

SGCN ⠀ A PyTorch implementation of Signed Graph Convolutional Network (ICDM 2018). Abstract Due to the fact much of today's data can be represented as

Benedek Rozemberczki 251 Nov 30, 2022
DvD-TD3: Diversity via Determinants for TD3 version

DvD-TD3: Diversity via Determinants for TD3 version The implementation of paper Effective Diversity in Population Based Reinforcement Learning. Instal

3 Feb 11, 2022
This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR

This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR,which is an open-source toolbox based on PyTorch. The overall architecture will be sh

Jianquan Ye 82 Nov 17, 2022
PFFDTD is an open-source FDTD simulator for 3D room acoustics

PFFDTD is an open-source FDTD simulator for 3D room acoustics

Brian Hamilton 34 Nov 24, 2022
Code and data of the ACL 2021 paper: Few-Shot Text Ranking with Meta Adapted Synthetic Weak Supervision

MetaAdaptRank This repository provides the implementation of meta-learning to reweight synthetic weak supervision data described in the paper Few-Shot

THUNLP 5 Jun 16, 2022
Contrastive unpaired image-to-image translation, faster and lighter training than cyclegan (ECCV 2020, in PyTorch)

Contrastive Unpaired Translation (CUT) video (1m) | video (10m) | website | paper We provide our PyTorch implementation of unpaired image-to-image tra

1.7k Dec 27, 2022